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a b s t r a c t

Intersample behavior cannot be ignored when a sampled-data control system is subject to periodic
disturbances beyond the Nyquist frequency. In this paper, a disturbance observer-basedmultirate control
scheme is proposed to deal with such a periodic disturbance problem. First, using discrete-time Fourier
series, the effect of the periodic disturbance on steady-state response of the plant output including
intersample information is derived. Next, based on the steady-state output response, a sufficient condition
is provided for minimization of the disturbance effect on the output. It turns out that solving the
sufficient condition is a problemof quadratic optimizationwith several equality constraints. The proposed
approach is applied on vibration control ofmechanical resonantmodes beyond the Nyquist frequency in a
commercial hard disk drive. Perfect disturbance elimination and disturbance deduction of 72% in fast-rate
discrete-time response are observed in the simulation and experiment, respectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Various control systems are subject to periodic disturbances
(Longman, Akogyeram, Juang, & Hutton, 2000), such as rotating
mechanical systems (Reinig & Desrochers, 1986), vibration sup-
pression in helicopters (Chen, Li, Teo, & Tan, 2017; Pigg & Bod-
son, 2010), and disk drive servo systems with repeatable runout
disturbance (Amara, Kabamba, & Ulsoy, 1999). In current litera-
ture, many approaches can be found for rejecting periodic distur-
bances, such as the repetitive control technique (Hara, Yamamoto,
Omata, & Nakano, 1988), the phase-locked loop technique-based
methods (Bodson, 2001; Bodson & Douglas, 1997; Bodson, Sacks,
& Khosla, 1994;Wu & Bodson, 2003), the internal model principle-
based feedback control (Brown & Zhang, 2004; Kim, Kim, Chung,
& Tomizuka, 2011), and the adaptive control methods (Jafari, Ioan-
nou, Fitzpatrick, & Wang, 2015; Kim, Shim, & Jo, 2014).
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Nowadays, many applications of control systems are imple-
mented digitally (Chen & Francis, 1995; Franklin, Powell, & Work-
man, 1998), and a fully assembled digital control system usu-
ally has a limited output sampling rate due to hardware con-
strains in ADC/DAC or manufacturing costs (Fujimoto & Hori,
2002; Yamaguchi, Hirata & Pang, 2013; Yan, Du, & Pang, 2015).
When this control system is subject to disturbances at frequencies
beyond the Nyquist frequency of the output sampling rate, unob-
servable oscillations or ripples of the output occurring between
samples can degrade the performance or even destabilize the
closed-loop control system (Atsumi & Messner, 2012; Pang, Yan,
& Du, 2016). To the best of our knowledge, there are few works for
rejecting disturbances beyond the Nyquist frequency. By employ-
ing both frequency responses of the digital controller and the plant
(Atsumi, Okuyama, & Nakagawa, 2008, 2010), a design method
was presented to suppress disturbances beyond the Nyquist fre-
quency for hard disk drive servo systems. Recently, an add-onmul-
tirate adaptive control scheme (Yan, Du, & Pang, 2016) is proposed
for compensating of uncertain mechanical resonances beyond the
Nyquist frequency in high-performance mechatronic systems. Us-
ingmodels of the fast-rate discrete-time plant and the disturbance,
a discrete-time regulation scheme is proposed for disturbance re-
jection beyond the Nyquist frequency (Chen & Xiao, 2016).

In this paper, we design a disturbance observer-basedmultirate
control scheme to reject periodic disturbances beyond the Nyquist
frequency of the measured output sampling rate. The essential
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Fig. 1. Blocked diagram of single-rate sampled-data control system. Solid line:
continuous-time signals. Dashed line: discrete-time signals with sampling period
JT , J ∈ Z+

\ {1}.

contribution of this paper is threefold. First, the effect of the
periodic disturbance on the fast-rate plant output is established by
a linear difference equation where coefficients of the disturbance
are periodic time-varying. Second, the discrete-time Fourier series
is employed to derive steady-state response of the fast-rate plant
output including intersample information. Third, minimization of
steady-state output response under the disturbance is formulated
as a problem of quadratic optimization with several equality
constraints. The disturbance observer can be obtained after solving
the quadratic optimization problem. The proposed approach is
applied to suppress mechanical resonances beyond the Nyquist
frequency for a commercial hard disk drive. Perfect disturbance
elimination and disturbance deduction of 72% in fast-rate discrete-
time response are observed in the simulation and experiment,
respectively.

The remaining parts of the paper are organized as follows.
Section 2 formulates the disturbance rejection problem. Our main
results are presented in Section 3. Section 4 gives an application
example to illustrate the effectiveness of the proposed approach.
Section 5 summarizes our conclusions.

2. Problem formulation

Consider a single-rate sampled-data control system as shown in
Fig. 1, where G(s) is a continuous-time linear time-invariant (LTI)
plant to be regulated, HJT is a zero-order hold (ZOH) with period
JT , SJT is a sampler with period JT , and J ∈ Z+

\ {1}. It is worth
noting that the output sampling period JT is fixed, and T → 0 if
J → ∞. Based on the sampled signal {y(kJT ), k = 0, 1, 2, . . .}, the
discrete-time feedback LTI controllerK(q−J) is designed to regulate
y(t) when the output of G(s) is subject to the external disturbance
d(t), where q−1 is a backward shift operator with sampling period
T , i.e.,

q−1x(kT ) = x(kT − T ). (1)

For such a single-rate sampled-data control system, the controller
K(q−J) is sufficient to regulate y(t) when d(t) has no significant
frequency components at the frequency above 1

2JT , which is the
Nyquist frequency of the measured output y(kJT ). However, it
is challenging for K(q−J) to regulate y(t) when d(t) contains
significant frequency components above 1

2JT .
In this paper, we shall deal with disturbance rejection problem

when d(t) is periodic and its frequency can be up to 1
2T . As such,

we need to at least analyze the fictitious fast-rate output y(kT ). It
is worth noting that a T -periodic discrete-time signal {x(kT ), k =

0, 1, . . .} can be denoted by {x(kJT + mT ),m = 0, 1, . . . , J −

1} involving the slow-rate signal x(kJT ) and intersample signal
{x(kJT + mT ),m = 1, 2, . . . , J − 1}.

We propose the disturbance observer-based multirate control
scheme as shown in the red dash-dotted box of Fig. 2, where the
output y(kJT + mT ) consists of the measured data y(kJT ) and
unmeasured intersample data {y(kJT +mT ),m = 1, 2, . . . , J − 1}.
G(q−1) is the ZOH-equivalent discrete-time model of G(s) with

Fig. 2. Disturbance observer-based multirate control. Solid line: continuous-time
signals. Dashed line: discrete-time signals with sampling period JT , J ∈ Z+

\ {1}.
Dotted line: discrete-time signals with sampling period T .

period T and Ĝ(q−1) is a precise estimation for G(q−1). This paper
aims to design the finite impulse response (FIR) filter Q (q−1) for
minimizing the effect of d(kT ) on y(kT ).

Remark 1. As mentioned earlier, the fictitious fast-rate output
y(kT ) or y(kJT + mT ) is used for mathematical analysis. Only the
measured slow-rate output y(kJT ) is fed back to the controller
K(q−J), which can be seen both from Figs. 1 and 2.

Remark 2. For G(s) embedded in Fig. 1, we can apply the identifi-
cation methods (Yan et al., 2015) or (Pang et al., 2016) to precisely
estimate Ĝ(q−1) by only using the slow-rate output y(kJT ).

Remark 3. It should be pointed out that the following results de-
pend on the precise model for the plant. Simulation studies in Sec-
tion 4 are also carried out to show the robustness of the proposed
method when the plant shifts in a certain range.

As a periodic discrete-time signal can be decomposed into
several sinusoids, we consider d(kT ) without loss of generality as
a single sinusoid, i.e.,

d(kT ) = ej2π
M
N kT , 0 6

M
N

<
1
2
, (2)

where j2 = −1,M ∈ Z+, N ∈ Z+, and N
J ∈ Z+.

Without loss of generality, let G(q−1) take the form as

G(q−1) =
B(q−1)

A(q−1)
=

ng J
i=0

biq−i

ng J
i=0

aiq−i

, (3)

where ng ∈ Z+ and a0 = 1. The coefficient b0 can possibly be zero.
Let the FIR filter Q (q−1) take the form as

Q (q−1) =

nJ
i=0

ciq−i, n ∈ Z+. (4)

Our main results are presented in the following section. Hereafter,
T = 1 is used for simplicity of notation.

3. Main results

3.1. Effect of d(k) on y(k)

In this subsection, the effect of d(k) on y(k) is derived from the
parameters in G(q−1) and Q (q−1).
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