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a b s t r a c t

We provide a new sequential predictors approach for the exponential stabilization of linear time-varying
systems. Our method circumvents the problem of constructing and estimating distributed terms in the
control laws, and allows arbitrarily large input delay bounds, pointwise time-varying input delays, and
uncertainties. Instead of using distributed terms, our approach to handling longer delays is to increase
the number of predictors. We obtain explicit formulas to find lower bounds for the number of required
predictors. The formulas involve bounds on the delays and on the derivatives of the delays. We illustrate
our method in three examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This work continues our search (which we began in Mazenc
& Malisoff, in press) for predictive control methods for time-
varying systems that can be appliedwithout computing Lie deriva-
tives and without computing distributed terms, and which can
compensate for arbitrarily long input delays. Our work is moti-
vated by the ubiquity of input delays across engineering, cou-
pled with the challenges that one may encounter when building
delay tolerant feedback controls, if one applies traditional emu-
lation or prediction methods that can involve distributed terms.
See, e.g., Bekiaris-Liberis and Krstic (2013), Michiels and Niculescu
(2007), and Richard (2003) for overviews on delay compensat-
ing control, Sharma, Gregory, and Dixon (2011) for constant elec-
tromechanical input delays in muscle response in neuromuscular
electrical stimulation (or NMES), and Kamalapurkar, Fischer, Obuz,
and Dixon (2016) and Merad, Downey, Obuz, and Dixon (2016) for
extensions to NMES under time-varying input delays.
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partially presented at the 55th IEEE Conference on Decision and Control, December
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the present work and the conference version. This paper was recommended for
publication in revised form by Associate Editor Fouad Giri under the direction of
Editor Miroslav Krstic.
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For constant coefficient linear systems, it often suffices to use
linearmatrix inequalities (or LMIs) to build delay tolerant controls,
but many important linear systems are time-varying. For instance,
when tracking reference trajectories and linearizing around the
reference trajectories, we obtain time-varying linear systems, even
if the original system is time invariant. See Germani, Manes,
and Pepe (2002), and Mazenc, Malisoff, and Niculescu (2014) for
systemswith delayed outputs,which lead to input delayed systems
when the output for one system is an input for another system.

Traditional input delay compensation methods can roughly
be grouped into three approaches. One approach is to solve a
stabilization problem with the input delay set equal to 0, and
to then look for upper bounds on the input delay that the
resulting closed loop system can tolerate, without sacrificing the
desired stability properties. Two advantages of this so-called
emulation approach are that (a) it makes it possible to use
relatively simple controls for undelayed systems (such as Lie
derivative feedbacks and other approaches from Khalil, 2002) and
(b) the strict Lyapunov functions that one obtains from solving the
feedback design problem for the corresponding undelayed system
can often be transformed into Lyapunov–Krasovskii functionals,
which can in turn be used to compute bounds on the input
delays that the closed loop system can tolerate. See Fridman
and Niculescu (2008) for background on Lyapunov–Krasovskii
functionals, and Mazenc, Malisoff, and Lin (2008) for ways to
transform strict Lyapunov functions for undelayed systems into
Lyapunov–Krasovskii functionals for the corresponding input
delayed systems.
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Another approach is the reduction model method, where the
control is expressed implicitly as a solution of an integral equation,
which can lead to challenging problems of numerically computing
controls, especially when the system has uncertainty or the delay
is time-varying. Prediction is another useful method, where the
states in the controls are replaced by numerical predictions of
the states. Standard prediction or reduction model methods can
compensate for arbitrarily long input delays, and so may have
an advantage over emulation for communication networks or
multi-agent problems that are prone to long input delays, but the
distributed terms in their controls (which use all values of the input
or of the state on some interval of times)maymake them harder to
implement; see Artstein (1982), Bekiaris-Liberis and Krstic (2012),
Mazenc, Niculescu, andKrstic (2012), andWitrant, Canudas deWit,
Georges, and Alamir (2007).

This paper provides a new sequential predictors approach to
exponential stabilization of time-varying linear systemswith time-
varying input delays, and therefore builds on recent notable works
such as Najafi, Hosseinnia, Sheikholeslam, and Karimadin (2013)
(which used LMI methods for time invariant linear systems to
build sequential predictors) and Léchappé (2015) (which extended
Najafi et al., 2013 by studying constant coefficient linear systems
with time-varying delays, which is a smaller class of systems than
the time-varying systems that we consider here). It also extends
Mazenc and Malisoff (in press), which was confined to constant
delays. Sincewe do not use any distributed terms or Lie derivatives
in our control, our work is also very different from the classical
reduction model or the more recent prediction approaches that
have been used by M. Krstic and others (as in Bresch-Pietri & Petit,
2014; Karafyllis & Krstic, 2013, and Krstic, 2009).

Our approach uses several dynamic extensions. Each dynamic
extension has the same dimension as the original system. This
contrasts with the reduction model approach, where the integral
equation that produces the control has the same dimension as the
control. Since we do not use distributed terms, our work differs
from Ahmed-Ali, Karafyllis, Krstic, and Lamnabhi-Lagarrigue
(2016); Ahmed-Ali, Karafyllis, and Lamnabhi-Lagarrigue (2013),
and other works that use several dynamic extensions and
distributed terms. We obtain closed form control formulas and
ways to compute lower bounds on the number of required
extensions. Our work is mainly a theoretical and methodological
development. However, we illustrate our work in three examples,
including a pendulum dynamics that we studied in Mazenc et al.
(2014),whereweused a reductionmodel approach anddistributed
controls but did not cover time-varying delays.

There are several other notable works that use prediction
without using distributed terms, but which do not cover the
problems that we solve in the present work. The works Ahmed-
Ali, Cherrier, and Lamnabhi-Lagarrigue (2012), Cacace, Conte,
and Germani (2016), Cacace, Conte, Germani, and Palombo
(2016), and Zhou, Lin, and Duan (2012) focused on time-
invariant linear systems ẋ = Ax + Bu, and they use eigenvalue
conditions on A and bounds on the delays or controllability
conditions, without guaranteeing robustness under uncertainty;
strict feedback systems were covered in Cacace, Conte, Germani,
and Pepe (2016) by adding conditions on the coefficient matrices
of a new system that is obtained by using a diffeomorphic
transformation, but we do not require such conditions here;
Cacace, Germani, and Manes (2014b) proved asymptotic stability
results with prescribed decay rates for linear time-invariant
systems by using partial spectrum assignment; Cacace, Germani,
and Manes (2014c) was also limited to time-invariant linear
systems; Germani et al. (2002) used a globally drift-observability
condition (which we also do not require here) to cover nonlinear
systems; and Zhou (2014a,b) gave sufficient conditions for
stabilizability for time-varying linear systems under pseudo-
predictor feedback with an integral delay system that is also not

needed in the present work. Our work is also reminiscent of
Cacace, Germani, and Manes (2014a), which is devoted to chain
observers for time invariant nonlinear systems with time-varying
measurement delays, and so does not cover the uniform global
exponential stabilization results that we present here.

We use standard notation and definitions. Throughout the
sequel, the dimensions are arbitrary, unless otherwise noted. We
omit arguments of functions when they are clear, and we assume
that the initial times t0 for our solutions of our systems are t0 = 0,
but we can write analogs for general choices of t0 ≥ 0. We use | · |

to denote the usual Euclidean norm and the induced matrix norm,
|φ|∞ (resp., |φ|I) is the essential supremum (resp., supremumover
any intervalI) for any boundedmeasurable functionφ, and In is the
n × n identity matrix.

Our preliminary version (Mazenc &Malisoff, 2016) of this work
only provides a sketch of the proof of its main result, while here
we provide a complete and new proof, and a new example from
identification theory that was not in Mazenc and Malisoff (2016).
Our new proof includes a new Lyapunov–Krasovskii functional
approach that can allow smaller values for the number of required
sequential subpredictors than what was required in Mazenc and
Malisoff (2016); see Remark 4.

2. Main result

We study systems of the form

ẋ(t) = A(t)x(t) + B(t)u(t − h(t)) + δ(t), (1)

where the state x and the control u are valued in Rn and Rℓ,
respectively, h : R → [0, ∞) is a known time-varying delay, and
δ : [0, ∞) → Rn is an unknown measurable essentially bounded
function representing unmodeled features or actuator errors. We
make two assumptions:

Assumption 1. The function h is C1 and bounded from above by a
constant ch > 0, ḣ has a finite lower bound h ∈ R, ḣ is bounded
from above by a constant lh ∈ (0, 1), and ḣ has a global Lipschitz
constant nh > 0. �

Assumption 2. The functionsA and B are bounded and continuous,
and there is a known bounded continuous function K : [0, ∞) →

Rℓ×n such that

ẋ(t) = [A(t) + B(t)K(t)]x(t) (2)

is uniformly globally exponentially stable on Rn to 0. �

Assumption 1 can model many delays, e.g., by using a standard
denseness argument to arbitrarily closely approximate many non-
C1 delays, including discontinuous delays; see Remark 2. In terms
of an integerm > 1 that we specify later, we use the functions

Ωi(t) = t −
i
m

h(t) and θj(t) = Ω−1
m−j+1(Ωm−j(t)) (3)

for all i ∈ {0, . . . ,m} and j ∈ {1, . . . ,m}, and define

R1 = θ̇1 and Ri(t) = θ̇i(t)Ri−1(θi(t)) for i > 1. (4)

The preceding functions are used to define the coefficients in
our subpredictors and to produce the required exponential decay
estimate of our transformed error vector in our theorem. Such
functions exist because our upper bounds ch and lh ∈ (0, 1)
from Assumption 1 imply that the Ωi’s have the range R and are
strictly increasing. Hence, the θi’s are also strictly increasing and
C1. The inverses in (3) can be computed numerically using standard
programs, e.g., the command

g = InverseFunction[Function[t, t − h[t]/m]] (5)
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