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a b s t r a c t

Weconsidermodel predictive control (MPC)without terminal costs and constraints. Firstly, we rigorously
show thatMPCbased on quadratic stage costsmay fail, i.e., there does not exist a prediction horizon length
such that a (controlled) equilibrium is asymptotically stable for the MPC closed loop although the system
is, e.g., finite time controllable. Hence, stability properties of the infinite horizon optimal control problem
are, in general, not preserved in MPC as long as purely quadratic costs are employed. This shows the
necessity of using the stage cost as a design parameter to achieve asymptotic stability. Furthermore, we
relax the standard controllability assumption employed inMPCwithout terminal costs and constraints to
alleviate its verification.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is nowadays a well-established
control methodology — both from a more theoretical point of
view (Grüne & Pannek, 2017; Lee, 2011; Rawlings &Mayne, 2009)
and in many different fields of application (Camacho & Bordons,
2012; Qin & Badgwell, 2003; Rodriguez, Kazmierkowski, Espinoza,
Zanchetta, Abu-Rub, Young, & et al., 2013). One of the key drivers
for its success story is the simplicity of the basic idea: measure
the current state, solve a finite-horizon optimal control problem
online, and implement the first portion of the computed control
strategy. Then, this loop is iteratively repeated ad infinitum to
generate an input signal on the infinite time horizon. MPC is
particularly attractive due to its capability to deal with constrained
multi-input multi-output systems. However, its stability analysis
is far from being trivial and closed-loop stability is not necessarily
guaranteed if the MPC controller is not designed appropriately,
see, e.g., Raff, Huber, Nagy, and Allgöwer (2006). In order to es-
tablish asymptotic stability of the MPC closed loop, there are two
main approaches available in the literature. The first is to impose
suitable additional terminal constraints and terminal costs in the
repeatedly solved optimal control problem, see, e.g., Chen and
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Allgöwer (1998) andMayne, Rawlings, Rao, and Scokaert (2000) or
the textbook (Rawlings & Mayne, 2009). Alternatively, a certain
controllability assumption is required (Grimm, Messina, Tuna, &
Teel, 2005; Grüne, 2009; Primbs & Nevistić, 2000) in order to avoid
the necessity to use such (artificial) terminal ingredients.

The goal of this paper is to shed light on various aspects and as-
sumptions of MPC without terminal cost and terminal constraints.
Within this setting, typically a certain controllability assumption
is used, which is formulated in terms of an upper bound on the
optimal value function, see, e.g., Grüne, Pannek, Seehafer, and
Worthmann (2010), Grüne and Rantzer (2008), Reble and Allgöwer
(2012) and Tuna, Messina, and Teel (2006). While such a controlla-
bility condition can be used to establish asymptotic stability of the
MPC closed loop, its verification is in general a difficult task, see,
e.g., Worthmann, Mehrez, Zanon, Gosine, Mann, and Diehl (2016)
for a non-trivial example. As a first main contribution, we weaken
this controllability condition, which might help to alleviate this
difficulty. In doing so,we also show that this new relaxed condition
is sharp.

Typically, MPC is applied to solve set point stabilization (track-
ing) problems. To this end, stage (running) costs are constructed
such that the deviation from the desired state and the control
effort are penalized. A typical choice in industrial practice is to
use quadratic cost functions, i.e., the distance from the set point
is weighted quadratically. As a second main contribution, we il-
lustrate via a simple example (the nonholonomic integrator/robot)
that when using such a quadratic stage cost, MPC might in general
not be stabilizing — independent of the length of the prediction
horizon. This means that stability properties of the infinite horizon
optimal control problem are not necessarily preserved — even for
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a very large prediction horizon; rather the stage cost has to be
suitably chosen to ensure asymptotic stability.

Finally, we discuss sufficient conditions under which quadratic
stage cost functions can be used, i.e., under which the above
described situation that quadratic stage cost functions might fail
cannot occur. Besides the well known case where the linearization
is stabilizable (Chen & Allgöwer, 1998), we present a (nonlinear)
local controllability condition which is suitable to this end.

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the considered problem setup and briefly re-
call stability results inMPCwithout terminal constraints and costs.
In Section 3, we show how the standard controllability condition
used in this setting can be relaxed and discuss implications of
this relaxation for closed-loop performance statements. Section 4
shows thatMPCwith a quadratic stage costmight not be stabilizing
independent of the length of the prediction horizon, before a suf-
ficient condition is derived under which quadratic cost functions
work. Finally, Section 5 concludes the paper.

Notation. N and R≥0 denote the natural and the non-negative
real numbers. Br (x) denotes the ball {y ∈ Rn

|∥y − x∥ ≤ r} of
radius r ∈ R>0 centered around x ∈ Rn, where ∥·∥ is the Euclidean
norm of the vector x.

2. Problem formulation

In this work, nonlinear systems governed by ordinary differen-
tial equations of the form

ẋ(t) = f (x(t), u(t)) (1)

with continuous vector field f : Rn
× Rm

→ Rn are considered.
The state and the control input at time t ∈ R≥0 are denoted by
x(t) ∈ Rn and u(t) ∈ Rm, respectively. In addition, the inputs
of system (1) are subject to pointwise in time input constraints,
i.e. u(t) ∈ U ⊆ Rm, where U is supposed to be closed. For the
sake of completeness, the control functions u : R≥0 → Rm are as-
sumed to be measurable and locally (Lebesgue-)integrable, i.e. u ∈

L1
loc([0, ∞),Rm). Moreover, the vector field f is supposed to be

continuous and locally Lipschitz with respect to its first argument
such that existence and uniqueness of the solution x(·; x0, u) of (1)
for given control function u and initial state x0 is at least locally
ensured. To simplify the notation, the solution is denoted by x(·) if
there is no ambiguity.

The control objective is to asymptotically stabilize a (controlled)
equilibrium, which without loss of generality is assumed to be the
origin, i.e. f (0, 0) = 0 and 0 ∈ U . We want to fulfill this control
task with model predictive control. To this end, the cost functional
JT : L1([0, T ),U) × Rn

→ R≥0 is defined as

JT (u, x̂) :=

∫ T

0
ℓ(x(t; x̂, u), u(t)) dt (2)

based on the positive definite stage cost function ℓ : Rn
× Rm

→

R≥0. The corresponding (optimal) value function VT : Rn
→ R≥0 is

given by

VT (x̂) := inf
u∈L1([0,T ),U)

JT (u, x̂). (3)

Note that (2) is only well-defined if the solution trajectory x(·)
exists on [0, T ]. In the following, it is tacitly assumed that, for each
state x̂ ∈ Rn, there is at least one admissible control, i.e.

{u ∈ L1([0, T ),U) : x(·; x̂, u) exists on [0, T ]} ̸= ∅

holds for all x̂ ∈ Rn. Moreover, let us suppose that the infimum of
the right hand side in (3) is attained, i.e. existence of an admissible
control u⋆ such that VT (x̂) = JT (u⋆, x̂) holds. Note that both the

cost functional JT and the value function VT depend on the horizon
length T > 0.

Using the introduced notation, the MPC scheme is as follows.

Algorithm 1MPC Algorithm
Given: Prediction horizon length T > 0 and sampling period δ ∈

(0, T ).
Set t = 0.

(1) Measure the current state x̂ := x(t).

(2) Compute a minimizer u⋆
: [0, T ) → Rm of (2).

(3) Implement uMPC (t + τ ) = u⋆(τ ) for τ ∈ [0, δ), set t = t + δ,
and goto Step 1.

Algorithm1 is anMPC schemewithout terminal constraints and
costs.

Remark 1. The above problem formulation can be extended to
also include state constraints, i.e., x(t) ∈ X ⊆ Rn is required
to hold for all t ≥ 0. When considering MPC schemes without
additional terminal constraints, the presence of such state con-
straints necessitates some additional assumptions or techniques
in order to ensure recursive feasibility of the MPC algorithm, see,
e.g., Boccia, Grüne, and Worthmann (2014) or (Grüne & Pannek,
2017, Chapter 7). The following results then also hold in such a
setting including state constraints.

Without terminal constraints and costs, the prediction horizon T
has to be chosen large enough such that in combination with
a certain controllability assumption, asymptotic stability can be
concluded. This controllability assumption is typically stated as the
existence of a suitable upper bound on the optimal value function,
see, e.g. Tuna et al. (2006) and Reble and Allgöwer (2012) for its
counterpart in continuous time.

Assumption 2 (Growth Bound). Let a continuous, monotonically
increasing, and bounded function B : R≥0 → R≥0 be given such
that, for each x ∈ Rn and each t ∈ R≥0, the following inequality
holds for the optimal value function Vt as defined in (3):

Vt (x) ≤ B(t) · inf
u∈U

ℓ(x, u). (4)

Typically, infu∈Uℓ(x, u) = ℓ(x, 0) holds, e.g. if the control effort is
penalized by an additive term in the stage cost ℓ. Using Assump-
tion 2, one can obtain the following result, see Reble and Allgöwer
(2012).

Theorem 3. Suppose that Assumption 2 is satisfied and that there
exists a K∞-function2 η such that η(∥x∥) ≤ infu∈Uℓ(x, u) holds for
all x ∈ Rn. Then there exists T > 0 such that the MPC closed loop
resulting from Algorithm 1 is (globally) asymptotically stable.

In fact, the results in Grüne et al. (2010) (discrete time) and
Reble and Allgöwer (2012) (continuous time setting) also provide
a technique to estimate the prediction horizon length T such that
asymptotic stability holds (see Worthmann, Reble, Grüne, and
Allgöwer, 2014 for the connection of both approaches). The basic
idea is to interpret the value function VT as a Lyapunov function. In
addition, a performance estimate of theMPC closed loop compared
to the infinite horizon optimal solution can be concluded (degree
of suboptimality α).

2 A function η : R≥0 → R≥0 is said to be of class K∞ if it is continuous, zero at
zero, strictly monotonically increasing, and unbounded.
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