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a b s t r a c t

This article deals with the problem of fault prognosis in timed stochastic discrete event systems. For that
purpose, partially observed stochastic Petri nets are considered to model the systemwith its sensors. The
model represents both healthy and faulty behaviors of the system. Using a timedmeasurement sequence
issued from the sensors, an approach denoted (ρ, δ)-prognosis is proposed to estimate the probability
of a future fault occurrence. The method is based on two input parameters: the error bound ρ and the
prognosis horizon δ. The main contribution is to bound the estimation error by ρ when the prognosis
horizon does not exceed δ. An example is presented to illustrate the results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems can be seen as Discrete Event Systems (DESs).
Their state evolution depends entirely on the occurrence of
discrete events (Cassandras & Lafortune, 2008). For such systems,
faults prognosis, which consists in predicting a fault event before
its occurrence, is a main challenge. The objective is to anticipate a
fault occurrence in order to take any corrective actions in advance.

In the literature, fault prognosis of DESs has received consid-
erable attention. In untimed context, Genc and Lafortune (2009)
is one of the pioneer works that addresses the problem of event
prediction (or prognosis) for partially observed DESs. Finite au-
tomata models, where some events are observable, are used to
model the system. The notion of predictability was formulated as
the capability to deduce future faults occurrences based on actual
measurement records. Its principle is inspired from diagnosabil-
ity of DESs introduced in Sampath, Sengupta, Lafortune, Sinnamo-
hideen, and Teneketzis (1995). In Jéron, Marchand, Genc, and
Lafortune (2008), predictability concerns sequence patterns rather
than a single event. In Kumar and Takai (2010), the authors con-
sider fault prognosis in decentralized settings, such that a global
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prognosis decision is computed from local decisions. Recent works
on fault prognosis focus on some properties such as robustness
(Takai, 2015), and on guaranteed performance bound of decentral-
ized fault prognosis (Yin & Li, 2016). In timed context, predicting
event occurrences for partially observed timed automata has been
investigated in Cassez and Grastien (2013). It shows that the ex-
plicit consideration of time is crucial for fault prognosis of DESs.
Indeed, it gives for example the remaining time before the occur-
rence of a fault event, in order to stop or to reconfigure the system.

Note that the deterministic methods are rather rigid since
they only consider the case where the fault occurs without
ambiguity. Recently, to overcome this binary analysis, the authors
of Chen and Kumar (2015) and Nouioua, Dague, and Ye (2014)
studied stochastic failure prognosability of DESs monitored with
probabilistic automaton. In Chen and Kumar (2015) the notion of
Sm-Prognosability or m-steps Stochastic Prognosability, which is the
ability to predict a fault at least m-steps prior to its occurrence, is
proposed in untimed settings.

In this work, we investigate the problem of faults prognosis in
timed stochastic DESs modeled by Partially Observed Stochastic
Petri Nets (POSPNs). It consists in computing, at a given time,
the probability that the system behavior becomes faulty in the
future time. Given two input parameters, an error bound ρ and
a prognosis time horizon δ, the objective of the present study is
to estimate the probability that a fault will occur within δ, and to
show that the estimation error is lower than ρ. This estimation
is performed online during the system evolution. To this end, the
(ρ, δ)-prognosismethod is introduced.
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The problem of faults prognosis in stochastic DESs has been
introduced in our previous works (Ammour, Leclercq, Sanlaville,
& Lefebvre, 2016a; Lefebvre, 2014). Compared to the approach
presented here, only the untimed context for the prognosis issue
was considered in Lefebvre (2014). Indeed, the method is based
on the probability of firing a specific transition before any other
transition. In Ammour et al. (2016a), prognosis in timed context
has been introduced. But only possible continuations (future
behaviors), with limited size lmax from the current markings,
were considered for fault prognosis regardless the prognosis time
horizon. Consequently, no guarantee on the estimation error was
provided since the choice of lmax is arbitrary and does not depend
on the prognosis horizon. Indeed, a small value of lmax saves
computational efforts but implies a limited prognosis accuracy
(with respect to (wrt) the prognosis horizon). On the other hand,
a large value of lmax leads to high computational efforts without
improving necessarily the accuracy of the prognosis. The key idea
behind the (ρ, δ)-prognosis approach introduced here is, from a
state estimation consistent with the measurements, to determine
the appropriate bounded set of themost probable continuations in
order tomakepossible the estimation of the future fault probability
and, subsequently, to show that this estimation fulfills a bounded
estimation error. To the best of our knowledge, faults prognosis
based on POSPNs was rarely explored despite this formalism
considers both partial measurements of markings and events.

The remainder of this paper is structured as follows. In
Section 2, POSPNs and timed observation sequences are described.
Thereafter, the stochastic fault prognosis is studied in Section 3
where the (ρ, δ)-prognosis approach is detailed. Section 4 presents
some conclusions and perspectives.

2. Preliminaries

2.1. Partially observed stochastic Petri nets

Let Gs = ⟨P, T , WPR, WPO, µ⟩ be a Stochastic Petri Net (SPN)
structure, where P = {P1, . . . , Pn} is a set of n places and T =

{T1, . . . , Tq} is a set of q transitions. WPO ∈ (N)n×q and WPR ∈

(N)n×q are the post andpre incidencematrices andW = WPO−WPR
is the incidence matrix. SPNs are characterized by random firing
delays associated with the transitions (Molloy, 1982). µ =


µj


∈
R+
q is the firing rate vector which characterizes the transition

firing periods. ⟨Gs, MI⟩ is a SPN model with initial markingMI and
M ∈ (N)n represents the SPN marking vector. A transition Tj is
enabled at marking M if and only if (iff) M ≥ WPR(:, j), where
WPR(:, j) is the column j of the pre incidence matrix. One writes
M [Tj⟩ to denote that the transition Tj may fire from the marking
M . For each transition Tj, the firing periods are given, atmarkingM ,
by a random variable (rv) with an exponential probability density
function (pdf). The parameter of the rv is nj(M) · µj where nj (M)
stands for the enabled degree of transition Tj at marking M . It is

given by nj (M) = min


mk
wPR(k,j)


, Pk ∈

◦Tj

where ◦Tj is the

set of Tj upstream places denoted by Pk and mk their markings.
Finally, ⌊·⌋ stands for the lower rounded value of (·). When Tj fires
once, the marking varies according to ∆M = M ′

− M = W (:, j).
This is denoted byM[Tj⟩M ′. An untimed firing sequence σU of size
h = |σU | fired at marking M (0) is a sequence of h transitions
σU = T (1)T (2) . . . T (h), with T (j) ∈ T , j = 1, . . . , h that
consecutively fire from M (0). This leads to the untimed marking
trajectory denoted by (σU , M (0)). The probability of the untimed
trajectory (σU ,M (0)) is given by:

P (σU ,M (0)) =


k=1...h

 nk (M (k − 1)) µk
Tj∈T

nj (M (k − 1)) µj

 . (1)

The integer xj(σU) is the number of occurrences of the transition
Tj in σU , and X(σU) =


xj(σU)


∈ (N)q is the firing count

vector of σU . When time is considered, a timed firing sequence will
simply be denoted by σ . When the sequence is fired at marking
M (t0) in time interval [t0 th], σ is defined in a similar way: σ =

T (t1)T (t2) . . . T (th) where tj, j = 1, . . . , h represent the firing
dates of the transitions T (tj) ∈ T that satisfy t0 ≤ t1 ≤ t2 ≤ · · · ≤

th. The timed marking trajectory is then denoted by (σ ,M (t0))
and M (t0) [σ ⟩ denotes that σ may fire from the marking M (t0).
A labeling function L : T → E ∪ {ε} is introduced to assign a label
to each transition where E = {e1, . . . , eqo} is the set of qo labels
assigned to observable transitions and ε is the null label assigned
to the silent ones. A marking sensor matrix H ∈ (R)no×n is also
introduced to define the projection of the marking vectorM over a
subset of measured places of dimension no. The measured part of
the marking is denoted as Mo = H · M (Lefebvre, 2014). A POSPN
with initial markingMI is defined as ⟨Gs, L,H,MI⟩ where Gs is the
SPN structure, L is the event sensor function and H the marking
sensor matrix. Finally, F = {f1, . . . , fs} is the set of s fault classes
and the row vector Fα = (fαj) ∈ (N)1×q assigns the fault class fα to
some transitions such that fαj = 1 if Tj represents a fault of class fα
else fαj = 0. Transitions without any fault class are assumed to be
healthy and correspond to the expected behaviors.

2.2. Timed measurement sequences

A measurement function Γ is introduced according to the
sensor configuration. It collects, using the function L and thematrix
H , the K successive dated marking and event measurements of
a timed marking trajectory (σ , M(τ0)) over the time horizon
[τ0, τK ] (where τK is the date of the last measurement), and
organizes them in the timed measurement sequence (2):

Γ (σ , M) = (MO0, τ0) eO (τ1) (MO1, τ1)

. . . eO (τK ) (MOK , τK ) (2)

where MO0 = H · M(τ0), K is the length of the measurement
sequence and τj, j = 1, . . . , K refer to the dates of the
measurements. Given a timed measurement sequence in [τ0, τK ]

of form (2) denoted by TRO, a marking trajectory (σ ,M), that
satisfies Γ (σ , M) = TRO, is said to be consistent with TRO.
The set of all timed consistent trajectories wrt the measurement
sequence TRO is denoted byΓ −1 (TRO). AssumptionA is considered
in order to avoid consistent firing sequences with infinite number
of events:

Assumption A. The unobservable part of the reachability graph is
acyclic.

Assumption A is commonly adopted in the field of fault detection
with Petri net models. It can be ensured by the sensor configura-
tion. It guarantees that the size of unobservable firing sequences
that do not provide any measurement is bounded.

The set Γ −1 (TRO) of timed consistent trajectories is obtained
in two steps (Lefebvre, 2014); the first one is to get the set of
untimed trajectories that are consistent with the measurements
by solving linear matrix inequalities (LMI). The second step
consists on adding time constraints issued from the dates of the
measurements, in order to obtain timed trajectories consistent
with the measurements.

2.3. Sum of exponential random variables

Consider a set of n independent rvs Xi, i = 1, . . . , n having
exponential pdfs with parameters λi , i = 1, . . . , n respectively.
Let us denote by Sn the sum of these rvs: Sn =

n
i=1 Xi .

In the case where all the parameters λi are equal, the rv Sn
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