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a b s t r a c t

The potential of reset controllers to improve the transient performance of linear (motion) systems has
been extensively demonstrated in the literature. The design and stability analysis of these reset controllers
generally rely on the availability of parametric models and on the numerical solution of linear matrix
inequalities. Both these aspects may hamper the application of reset control in industrial settings. To
remove these hurdles and stimulate broader application of reset control techniques in practice,wepresent
new sufficient conditions, based on measured frequency response data of the system to be controlled,
to guarantee the stability of closed-loop reset control systems. The effectiveness of these conditions is
demonstrated through experiments on an industrial piezo-actuated motion system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A reset controller is a linear time-invariant (LTI) control system
of which the state, or a part of the state is reset to a certain value
(usually zero) whenever appropriate algebraic conditions on its
input and output are satisfied. Reset controllers were proposed
in 1958, see Clegg (1958), in order to overcome the inherent
performance limitations of linear feedback controllers imposed by
Bode’s gain–phase relationship. Especially in the last two decades,
reset control has regained attention from the control community in
both theoretically oriented research, see e.g., Aangenent, Witvoet,
Heemels, van de Molengraft, and Steinbuch (2010), Baños and
Barreiro (2012), Beker, Hollot, and Chait (2001); Beker, Hollot,
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Chait, and Han (2004), Nešić, Teel, and Zaccarian (2011); Nešić,
Zaccarian, and Teel (2008), Prieur, Tarbouriech, and Zaccarian
(2013) and Zhao and Wang (2016), as well as in applications
(Baños & Barreiro, 2012; Heertjes, Gruntjens, van Loon, Kontaras, &
Heemels, 2015; Panni, Waschl, Alberer, & Zaccarian, 2014; Zheng,
Chait, Hollot, Steinbuch, & Norg, 2000). However, despite the
potential of a reset controller to improve the transient performance
of linear systems, reset controllers are often not so easily embraced
by (motion) control engineers in industry. To a large extent, this
is caused by the fact that the vast majority of existing tools for
the stability analysis and the design of reset controllers rely on
parametric models and on solving linear matrix inequalities using
those models. As such, they do not interface well with the current
industrial (motion) control design practice, in which typically
frequency-domain tools and non-parametricmodels are exploited,
see, e.g., Butler (2011). Therefore, an important open problem is to
obtain easy-to-use, ‘industry-friendly’ design tools for reset control
systems using frequency-domain techniques as a basis.

In this paper, we contribute to solving this important open
problem and focus, in particular, on deriving stability conditions
that are graphically verifiable on the basis of measured frequency
response data concerning the system dynamics. These conditions
apply, amongst others, to the reset condition employed in
Aangenent et al. (2010), Forni, Nešić, and Zaccarian (2011), Nešić
et al. (2008) and Zaccarian, Nešić, and Teel (2011), and have some
connections to recent developments in variable gain control (VGC),
see, e.g., Heertjes and Steinbuch (2004), Hunnekens, van deWouw,
Heertjes, andNijmeijer (2015) and van deWouw, Pastink, Heertjes,
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Pavlov, and Nijmeijer (2008). In VGC, the use of the circle criterion,
see, e.g., Khalil (2000), is central in obtaining stability conditions
based on frequency-domain system models. A key step in the
approach for VGC is to write the closed-loop system as a so-called
Lur’e-type system, i.e., a feedback interconnection of an LTI
dynamical system and a static memoryless nonlinearity, see
Khalil (2000). Unfortunately, such an approach does not transfer
easily to reset controllers as the closed-loop system would be an
interconnection of an LTI dynamical system and a reset controller.
This is not a (true) Lur’e-type system as the reset controller (as
opposed to the VGC element) consists of a dynamical system that
exhibits discontinuities (jumps) in the state variables rather than a
static memoryless element. As such, applying Lur’e-type stability
arguments calls for a new perspective on reset control systems,
which we will provide in this paper by abstracting away from the
internal dynamics of the reset controller and focusing instead on
its input/output behavior, that can be confined to a certain sector
bound, see Khalil (2000). This sector bound can subsequently be
employed in a circle criterion-like condition. We will formally
prove that this will yield sufficient conditions to assess input-to-
state stability (ISS), see Cai and Teel (2009) and Sontag and Wang
(1995), of reset control systems (including the internal dynamics)
by evaluating (measured) frequency response data. In addition, this
new perspective on reset control can also be directly used for the
design of such controllers.

The results presented in this paper are not the first stability
conditions for reset control systems that are graphically verifiable
on the basis ofmeasured frequency response data. In Beker, Hollot,
Chen, and Chait (1999), see also Beker et al. (2004) containing
an overview of the work on reset control until the mid 2000s,
the Hβ-condition was developed involving a strictly positive real
condition to guarantee closed-loop stability of a class of reset
control systems. However, the result still required a parametric
model for the search of both a positive definite matrix and a
vector (both of size equal to the dimension of the states of the
controller that are reset) defining the output of the transfer matrix
that has to be strictly positive real. In this paper, we aim for
frequency-domain conditions for the analysis and design of reset
control systems, i.e., employing measured data instead of using
parametric models, with the additional advantage that the linear
part of the controller design and analysis can be performed by
shaping the frequency response of the open-loop and/or closed-
loop transfer functions, see Steinbuch andNorg (1998). In Carrasco,
Baños, and vander Schaft (2010) and Forni et al. (2011), the concept
of passivity has been used to analyze stability of reset systems. Key
in the work of Carrasco et al. (2010) is that a (full) reset system
retains the passivity properties of its underlying base system,
i.e., the system without the reset part. As a result, L2-stability
conditions can be verified in the frequency domain. In addition,
the results in Forni et al. (2011) can be seen as a generalization
of the results in Carrasco et al. (2010). The novelty in our stability
results compared to Carrasco et al. (2010) and Forni et al. (2011) is
the link to the circle criterion, resulting in less strict conditions on
the underlying base system. The relaxation lies in the fact that the
underlying linear system does not need to be strictly positive real
(as in Carrasco et al., 2010; Forni et al., 2011) but should satisfy
less stringent (circle-criterion) conditions. This fact significantly
widens the applicability scope of the results. An important class of
systems for which such relaxation is essential for the application
of reset control, is the class of motion control systems as studied as
a central application in this paper.

The outline of this paper is as follows. In Section 2, we present
the control architecture. In Section 3, we present our main results.
In Section 4, we discuss an industrial case study and demonstrate
the applicability of the presented results in practice. Finally in
Section 5, we provide the conclusions.

1.1. Nomenclature

The following notational conventions will be used. Let N, R,
R≥0, C denote the set of non-negative integers, real numbers,
nonnegative real numbers and complex numbers, respectively. The
Laplace transform of a signal x : R≥0 → Rn is denoted by L{x} and
s ∈ C denotes the Laplace variable. Some further hybrid system
notations from Goebel, Sanfelice, and Teel (2012) can be found in
the Appendix.

2. System description and problem formulation

In this section, we will formally introduce the reset control
system as considered in this paper and derive a closed-loop hybrid
model. In addition, we pose a problem formulation.

2.1. Hybrid closed-loop model

We will mainly focus on the single-input–single-output (SISO)
control architecture as depicted in Fig. 1, although our results
are applicable to other configurations as well, see Remark 8. The
closed-loop system in Fig. 1 consists of a linear time-invariant (LTI)
plant given by the transfer function P (s), s ∈ C, a nominal LTI
controller with transfer function C(s), reference r ∈ R, output
yp ∈ R, tracking error e := r − yp ∈ R and an external disturbance
d ∈ R. In this figure,R denotes a reset controller, which ismodeled
in terms of the hybrid system formalism of Goebel et al. (2012) as

R :

 ẋr = Arxr + Bre if (e, −u) ∈ F
x+

r = 0 if (e, −u) ∈ J
u = −Crxr

(1)

with state xr ∈ Rnr , controller output u ∈ R, and Ar , Br , Cr are
constant realmatrices of appropriate dimensions. In (1), flowof the
reset controller state xr occurs when the input/output pair (e, −u)
is in the flow set F given by

F :=

(e, −u) ∈ R2

| eu ≤ −
1
α
u2 (2a)

with α ∈ (0, ∞), and state resets occur when the input/output
pair (e, −u) is in the jump set J given by

J :=

(e, −u) ∈ R2

| eu ≥ −
1
α
u2 . (2b)

A schematic representation of the flow set F and the jump set J
can be found in Fig. 2(a). Later, the concept of hybrid time domains
and solutions (solution pairs) of hybrid systems of the form (1),
(2) will be used, which are defined for a general class of hybrid
systemswith inputs in the Appendix for convenience of the reader.
For more details on this hybrid modeling framework we refer the
reader to Cai and Teel (2009) and Goebel et al. (2012).

Remark 1. The general class of reset controllers in (1), (2)
encompasses two of the most well-known reset controllers in
the literature, i.e., the Clegg integrator (Clegg, 1958) and the
First-Order-Reset-Element (FORE) (Horowitz & Rosenbaum, 1975).
Indeed, these can be modeled as in (1) using

Clegg integrator : (Ar , Br , Cr) = (0, ωi, 1), (3)
FORE : (Ar , Br , Cr) = (β, ωi, 1), (4)

in which nr = 1, ωi ∈ R≥0 represents the integrator gain, and
β ∈ R denotes the single pole of the FORE, see, e.g., Zaccarian,
Nešić, and Teel (2005) and the references therein.

Let us adopt the following assumption on the reset controller (1),
(2).

Assumption 2. The pair (Ar , Cr) is detectable.
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