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a b s t r a c t

This paper investigates an iterative approach to solve the general rank-constrained optimization problems
(RCOPs) defined to optimize a convex objective function subject to a set of convex constraints and
rank constraints on unknown rectangular matrices. In addition, rank minimization problems (RMPs)
are introduced and equivalently transformed into RCOPs by introducing a quadratic matrix equality
constraint. The rank function is discontinuous and nonconvex, thus the general RCOPs are classified as
NP-hard in most of the cases. An iterative rank minimization (IRM) method, with convex formulation at
each iteration, is proposed to gradually approach the constrained rank. The proposed IRM method aims
at solving RCOPs with rank inequalities constrained by upper or lower bounds, as well as rank equality
constraints. Proof of the convergence to a local minimizer with at least a sublinear convergence rate is
provided. Four representative applications of RCOPs and RMPs, including system identification, output
feedback stabilization, and structured H2 controller design problems, are presented with comparative
simulation results to verify the feasibility and improved performance of the proposed IRM method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Rank-constrained optimization problems (RCOPs) are to min-
imize a convex function subject to a convex set of constraints
and rank constraints on unknown matrices. They have received
extensive attention due to their wide applications in signal pro-
cessing, model reduction, and system identification, just to name
a few (Kim & Moon, 2006; Markovsky, 2008, 2011; Ten Berge &
Kiers, 1991). Although some special RCOPs can be solved analyt-
ically (Golub, Hoffman, & Stewart, 1987; Markovsky & Van Huf-
fel, 2007), they are NP-hard in most of the cases. Existing methods
for RCOPs mainly focus on alternating projection based methods
(Dattorro, 2015; Delgado, Agüero, & Goodwin, 2014; Grigoriadis &
Skelton, 1996) and combined linearization and factorization algo-
rithms (Hassibi, How, & Boyd, 1999;Meyer, 2011) with application
to factor analysis, etc. However, these iterative approaches depend
on the initial guess and fast convergence cannot be guaranteed. In
addition, a Newton-likemethod (Orsi, Helmke, &Moore, 2006) has
been proposed to search for a feasible solution of RCOPswith appli-
cation to a feedback stabilization problem. A Riemannianmanifold
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optimization method (Vandereycken, 2010) has been applied to
solve large-scale Lyapunovmatrix equations by finding a low-rank
approximation. Also, Urrutia, Delgado, and Agüero (2016) propose
to use the toolbox BARON to solve a RCOP. There are alternative
approaches for solving specially formulated RCOPs. For example,
a greedy convex smoothing algorithm has been designed to op-
timize a convex objective function subject to only one rank con-
straint (Shalev-Shwartz, Gonen, & Shamir, 2011).

When the rank function in constraints of RCOPs appears as
the objective of an optimization problem, it turns to be a rank
minimization problem (RMP), classified as a category of nonconvex
optimization. Applications of RMPs have been found in a variety of
areas, such as matrix completion (Candès & Recht, 2009; Mohan &
Fazel, 2012; Recht, Fazel, & Parrilo, 2010), control system analysis
and design (El Ghaoui & Gahinet, 1993; Fazel, Hindi, & Boyd, 2001,
2004; Mesbahi, 1998; Mesbahi & Papavassilopoulos, 1997), and
machine learning (Meka, Jain, Caramanis, & Dhillon, 2008; Recht,
2011). The wide application of RMPs attracts extensive studies
aiming at developing efficient optimization algorithms.

Due to the discontinuous and nonconvex nature of the rank
function, most of the existing methods solve relaxed or simplified
RMPs by introducing an approximate function, such as log-det
or nuclear norm heuristic methods (Fazel, 2002; Fazel, Hindi, &
Boyd, 2003). The heuristic methods minimize a relaxed convex
function instead of the exact rank function over a convex set,
which is computationally favorable. They generally generate a
solution with lower rank, even aminimum rank solution in special
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cases (Recht et al., 2010). The relaxed formulation with convex
objective and constraints does not require the initial guess and
global optimality is guaranteed for the relaxed formulation. When
the unknown matrix is constrained to be positive semidefinite,
relaxation of RMPs using a trace function is equivalent to the
relaxed formulation using a nuclear norm function based on the
fact that the trace of a positive semidefinite matrix is equal to
its nuclear norm (Mesbahi & Papavassilopoulos, 1997). For cases
when the unknown matrix is not positive semidefinite, work
in Fazel (2002) introduces a semidefinite embedding lemma to
extend the trace heuristic method to general cases.

However, a relaxed function cannot represent the exact
rank function and performance of the heuristic method is not
guaranteed. Other heuristic methods, e.g., the iterative reweighted
least square algorithm (Mohan & Fazel, 2012) which iteratively
minimizes the reweighted Frobenius norm of the matrix, cannot
guarantee the minimum rank solution either. The uncertainty of
the performances in heuristic methods stems from the fact that
these methods are minimizing a relaxed function and generally
there is a gap between the relaxed objective and the exact one.
Other methods for RMPs include the alternating projections and
its variations (Grigoriadis & Skelton, 1996; Lee & Bresler, 2010;
Orsi et al., 2006), linearization (El Ghaoui, Oustry, & AitRami, 1997;
Hassibi et al., 1999), and augmented Lagrangian method (Fares,
Apkarian, &Noll, 2001). Thesemethods, similar to existing iterative
methods for RCOPs, depend on initial guess, which generally leads
to slow convergence to just a feasible solution.

After reviewing the literature, we come to a conclusion
that more efficient approaches that are applicable for general
ROCPs/RMPs with advantages in terms of convergence rate,
robustness to initial guess, and performance of cost function, are
required to solve RCOPs and RMPs. To our knowledge, there is few
literature that addresses equivalent conversion from RMPs into
RCOPs (Delgado, Agüero, & Goodwin, 2016; Sun & Dai, 2015a).
This paper describes a novel representation of RMPs in the form
of RCOPs and proposes a uniform approach to both RCOPs and
reformulated RMPs. Therefore, instead of solving two classes
of nonconvex optimization problems separately, the uniform
formulation and approach significantly reduces the required
efforts for solving two types of challenging problems.

An iterative rank minimization (IRM) method, with each se-
quential problem formulated as a convex optimization problem, is
proposed to solve RCOPs. The IRM method was introduced in our
previous work to solve quadratically constrained quadratic pro-
gramming problemswhich are equivalent to rank-one constrained
optimization problems (Dai & Sun, 2015; Sun & Dai, 2015b). The
IRM method proposed in this paper aims to solve general RCOPs,
where the constrained rank could be any assigned integer num-
ber. Although IRM is primarily designed for RCOPs with rank
constraints on positive semidefinite matrices, a semidefinite em-
bedding lemma (Fazel, 2002) is introduced to extend IRM to RCOPs
with rank constraints on general rectangular matrices. Moreover,
the proposed IRM method is applicable to RCOPs with rank in-
equalities constrained by upper or lower bounds, as well as rank
equality constraints. Sublinear convergence of IRM is proved via
the duality theory and the Karush–Kuhn–Tucker conditions. To
verify the effectiveness and improved performance of proposed
IRM method, four representative applications, including system
identification, output feedback stabilization, and structured H2
controller design problems, are presented with comparative re-
sults.

The rest of the paper is organized as follows. In Section 2, the
problem formulation of RCOP and the conversion of RMP to RCOP
are described, including extension to rank constraints on general
rectangular matrices. The IRM approach and its local convergence
proof are addressed in Section 3. Four application examples and
their comparative results are presented in Section 4. We conclude
the paper with a few remarks in Section 5.

1.1. Preliminaries

Some notations used throughout this paper are introduced in
this section. The n-dimensional Euclidean space is denoted by Rn.
The set of n × n symmetric matrices is denoted by Sn and the set
of n × n positive semidefinite (definite) matrices is denoted by
Sn

+
(Sn

++
). The notation X ≽ 0 (X ≻ 0) means that the matrix

X ∈ Sn is positive semidefinite (definite). The symbol ‘⇔’ means
if and only if logical connective between statements. The trace of
X is denoted by trace(X) and the rank of X is denoted by rank(X).
The linear span of vectors in X is denoted by span(X).

2. Problem formulation

2.1. Rank-constrained optimization problems

A general RCOP to optimize a convex objective subject to a set
of convex constraints and rank constraints can be formulated as
follows

min
X

f (X)

s.t. X ∈ C, rank(X) S r,
(2.1)

where f (X) is a convex function, C is a convex set, and X ∈ Rm×n

is a general rectangular matrices set. Without loss of generality,
it is assumed that m ≤ n. The sign R includes all types of rank
constraints, including upper and lower bounded rank inequality
constraints and rank equality constraints. Although lower bounded
rank inequality constraints and rank equality constraints do not
have as many practical applications compared to the upper
bounded rank inequality constraints, they are included here for
completeness. Because the existing and proposed approaches
for RCOPs require the to-be-determined matrix to be a positive
semidefinite matrix, it is then necessary to convert the rank
constraints on rectangular matrices into corresponding ones on
positive semidefinite matrices.

Lemma 1 (Lemma 1 in Fazel et al., 2004). Let X ∈ Rm×n be a given
matrix, then rank(X) ≤ r if and only if there exist matrices Y = Y T

∈

Rm×m and Z = ZT
∈ Rn×n such that

rank(Y ) + rank(Z) ≤ 2r,

Y X
XT Z


≽ 0.

However, Lemma 1 is not applicable to lower bounded rank
inequality constraints. As a result, a new lemma is introduced to
extend the above semidefinite embedding lemma to all types of
rank constraints. Before that, we first describe a proposition which
is involved in proof of the new lemma.

Proposition 2. Z = XTX is equivalent to rank


Im X
XT Z


≤ m,

where Z ∈ Sn, X ∈ Rm×n, and Im ∈ Rm×m is an identity matrix.

Proof. Given that the rank of a symmetric block matrix is equal to
the rank of a diagonal block plus the rank of its Schur complement,
we have the following relationship, rank


Im X
XT Z


≤ m ⇔

rank(Im) + rank(Z − XTX) ≤ m ⇔ m + rank(Z − XTX) ≤ m ⇔

rank(Z − XTX) = 0 ⇔ Z = XTX . �

Remark. When Z = XTX , it indicates that

Im X
XT Z


≽ 0 holds for

Im ≻ 0 and its Schur complement is a zero matrix.

Next, we give the extended semidefinite embedding lemma
below.
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