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a b s t r a c t

This paper concerns the state estimation problem for linear discrete-time non-Gaussian systems. It is
known that filters based on quadratic functions of themeasurements processes (Quadratic Filter) improve
the estimation accuracy of the optimal linear filter. In order to enlarge the class of systems, which can be
processed by a Quadratic Filter, we rewrite the system model by introducing an output injection term.
The resulting filter, named the Feedback Quadratic Filter, can be applied also to non asymptotically stable
systems. We prove that the performance of the Feedback Quadratic Filter depends on the gain parameter
of the output term, which can be chosen so that the estimation error is always less than or equal to the
Quadratic Filter.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the state estimation problem for linear
discrete-time non-Gaussian systems. In many applications, the
widely used Gaussian assumption must be removed (see Spall,
1985, 2003 and Wu & Chen, 1993). In these cases, the conditional
expectation, which gives the optimal minimum variance estima-
tion, is the solution of an infinite dimensional problem (Zakai,
1969). Methods to approximate the state conditional probability
density function include Monte Carlo methods (Arulampalam,
Maskell, Gordon, & Clapp, 2002), sums of Gaussian densities
(Arasaratnam, Haykin, & Elliott, 2007) and weighted sigma points
(Julier & Uhlmann, 2004) among others. These general solu-
tions can cope with nonlinearities and/or with the presence of
noise outliers (Stojanovic & Nedic, 2015) or unknown parameters
(Stojanovic & Nedic, 2016), and they generally have high com-
putational cost. In the context of linear non-Gaussian systems,
many research works aim at filtering algorithms that are easily
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computable (see Afshar, Yang, & Wang, 2012; Bilik & Tabrikian,
2010; Carravetta, Germani, & Raimondi, 1996; Gordon, Salmond,
& Smith, 1993; Kassam & Thomas, 1976; Maryak, Spall, & Heydon,
2004; Picinbono & Devaut, 1988; Spall, 1995; Zhang, Kuai, Ren,
Luo, & Lin, 2016 and the references therein). In the minimum vari-
ance framework a natural development is to use quadratic or poly-
nomial functions of the observations to improve the estimation
accuracy while preserving easy computability and recursion (Car-
ravetta et al., 1996; De Santis, Germani, & Raimondi, 1995; Ver-
riest, 1985). The suboptimal polynomial estimate is obtained by
applying the KF to a system augmented with the powers of state
and observations. A drawback of this approach is that the result-
ing augmented system is bilinear and the noise variance depends
on the state variance of the original system. Thus, if the variance
of the state grows unboundedly, so does the equivalent noise. As
a consequence the stability of the resulting Quadratic Filter (QF) is
guaranteed only for asymptotically stable systems. In this paper,
we propose to use an output injection term to overcome this prob-
lem and obtain an internally stable QF. Furthermore, we show that
any recursively implementable filter based on the use of powers of
measurements has an error that depends on the choice of the gain
of this output injection term, in contrast with the linear case. Thus,
the gain can be chosen to achieve a smaller estimation error than
the QF. A preliminary version of this work has been published in
Cacace, Conte, Germani, and Palombo (2014), where the theoreti-
cal analysis was missing.
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2. Discussion on quadratic filtering

Consider the problem of state estimation for a discrete-time
linear system with non-Gaussian noise in the form

x(k + 1) = Ax(k)+ Bu(k)+ fk, x(0) = x0 (1)
y(k) = Cx(k)+ gk (2)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rq, A ∈ Rn×n, B ∈ Rn×p

and C ∈ Rq×n. {fk} and {gk} are sequences of non-Gaussian random
variables with values in Rn and Rq, respectively. The system is
assumed fully observable, i.e. rank O(A, C) = n, where O(A, C)
is the observability matrix of the pair (A, C).

Throughout the paper we use the following notations. x[i] is the
ith Kronecker power of a vector x. st−1

q (·) is the inverse of the stack
function, which transforms a vector in Rq·l into a q × l matrix (see
Carravetta et al., 1996; De Santis et al., 1995). Given a random
vector x ∈ Ri, ψ (i)

x = E[(x − E[x])[i]], that is, its centered ith
moment.

The random sequences {fk} and {gk} and x0 satisfy the following
conditions for k ≥ 0:

(1) x0 ∼ N (x̄0,Ψx0);
(2) {fk} and {gk} are sequences of zero mean temporally indepen-

dent random vectors;
(3) {fk}, {gk} and x0 are statistically independent;
(4) x0, fk and gk have finite fourth moments;
(5) ψ (i)

x0 , ψ
(i)
f and ψ (i)

g , i = 2, 3, 4, are known vectors;

(6) [C Ψg ], Ψg = st−1
q (ψ

(2)
g ), is full row rank (FRR).

Let (Ω,F , P) be a probability space, G be a given sub σ -algebra
of F and L2(G, n) be the Hilbert space of the n-dimensional, G-
measurable random variables with finite second moment. We
write L2(X, n) to denote L2(σ (X), n), where σ(X) is the σ -algebra
generated by X .Π [·| M] is the orthogonal projection onto a given
Hilbert space M. Given system (1)–(2), the output sequence Yk =

col(y(0), . . . , y(k)) and the auxiliary vector Y ′

k = col(1, Yk) ∈

Rl+1, l = (k + 1)q, the minimum variance estimate of x(k) is the
orthogonal projection of x(k) onto the Hilbert space L2(Y ′

k, n),

x̂(k) = E [x(k)| σ(Yk)] = Π

x(k)| L2(Y ′

k, n)

. (3)

If the sequences {x(k)} and {y(k)} are jointly Gaussian, this
projection is equivalent to the projection on the closed subspace
Lk

y ⊂ L2(Y ′

k, n) of all affine functions of Yk,

Lk
y =


z : Ω → Rn

: ∃T ∈ Rn×l+1
: z = TY ′

k


. (4)

The KF recursively computes the projection Π[x(k)|Lk
y], the best

affine estimate of x(k) in the minimum variance sense. This
coincides with E [x(k)| σ(Yk)] only in the Gaussian case. When
{x(k)} and/or {y(k)} are non-Gaussian, the computation of (3) is
challenging.

Since the best affine estimate is obtained by projecting onto
Lk

y, better suboptimal estimates can be obtained by projecting the
state x(k) onto larger sub-spaces. For example, we may consider
the space of second-order polynomial (quadratic) transformations
of Yk, denoted by Qk

y .

Let Y (2)k = col(Y ′

k, Y
[2]
k ) ∈ Rl̃, l̃ = 1 + l + l2, then

Qk
y =


z : Ω → Rn

: ∃T ∈ Rn×l̃
: z = TY (2)k


. (5)

SinceLk
y ⊂ Qk

y ⊂ L2(Y ′

k, n), projecting the state ontoQk
y will return

an estimate, having an error variance equal to or smaller than that
of the affine estimate.

Theorem 1. Suppose system (1)–(2) satisfies conditions (1)–(6). Let
x̂L(k) = Π[x(k)|Lk

y], x̂
Q(k) = Π[x(k)|Qk

y], with errors eL(k) =

x(k) − x̂L(k), eQ(k) = x(k) − x̂Q(k). Then, E[eL(k)TeL(k)] ≥

E[eQ(k)TeQ(k)].

Proof. In virtue of the Hilbert projection theorem, x̂Q(k) has the
minimum distance from x(k) among all the elements of Qk

y . There-
fore, since Lk

y ⊂ Qk
y ,x(k)− x̂L(k)

2
L2(X,n) ≥

x(k)− x̂Q(k)
2
L2(X,n) , (6)

and the thesis follows from the definition of the norm in L2(X, n),
∥v∥2

L2(X,n) =

Ω
vTvdP = E[vTv]. �

To compute the optimal quadratic estimate the idea is to derive
an augmented version of (1)–(2) with vectors X(k) = col(x(k),
x[2](k)), Y(k) = col(y(k), y[2](k)) and use a recursive linear filter.
To this aim we have to consider the following issues:

(1) Π[x(k)|Qk
y] must be recursively computable;

(2) the augmented system must be detectable;
(3) the noise sequences of the augmented systemmust be second-

order asymptotically stationary processes (as defined in Car-
ravetta et al., 1996).

As for the first point, the computation ofΠ[x(k)|Qk
y]would require

a growing filter size, due to the presence in Qk
y of terms of the kind

yi(k1)yj(k2), with i, j ≤ 2. A possible solution (De Santis et al., 1995)
is to replace Y (2)k with

Y
(2)
k = col


Y ′

k, y(0)
[2], . . . , y(k)[2]


∈ Rl̄, (7)

l̄ = 1+ l+ (k+ 1)q2, that is, a vector containing only the observa-
tions and their Kronecker squares from time 0 to k. We obtain the
projection subspace

Q
k
y =


z : Ω → Rn

: ∃T ∈ Rn×l̄
: z = TY

(2)
k


, (8)

with Lk
y ⊂ Q

k
y ⊂ Qk

y . Thus, the corresponding recursively com-
putable quadratic estimate will not be the optimal quadratic esti-
mate, but it will still have an error variance not larger than the best
linear one.

Detectability (issue 2) may not be satisfied even when the
original pair (A, C) is fully observable, that is, the quadratic part
of X(k) may not be completely observable. To solve these issues,
we use output injection to rewrite (1)–(2) as an equivalent system
with an asymptotically stable and hence detectable stochastic part.

This solves issue 3 as well. The problem stems from the fact
that the state noise of the augmented system depends on x(k), see
Theorem 3.3.4 in Carravetta et al. (1996) or Theorem 1 in De Santis
et al. (1995). By rewriting the system as above, the augmented
system becomes asymptotically stationary.

3. The proposed approach

The proposed method, named Feedback Quadratic Filter (FQF),
consists of the following steps.

(a) System (1)–(2) is rewritten as a system with a feedback given
by an output injection term.

(b) The modified system is decomposed in the sum of a determin-
istic and a stochastic component.

(c) The augmented quadratic system is derived for the asymptot-
ically stable stochastic component.

(d) The KF for mutually correlated state and output noises is ap-
plied to the augmented quadratic system. The final estimate is
the sum of the deterministic component and the linear part of
the augmented estimate.
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