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a b s t r a c t

There are lots of papers on the delay dependent stability criteria for differential delay equations (DDEs),
stochastic differential delay equations (SDDEs) and hybrid SDDEs. A common feature of these existing
criteria is that they can only be applied to delay equations where their coefficients are either linear or
nonlinear but bounded by linear functions (namely, satisfy the linear growth condition). In other words,
there is so far no delay-dependent stability criterion on nonlinear equations without the linear growth
condition (we will refer to such equations as highly nonlinear ones). This paper is the first to establish
delay dependent criteria for highly nonlinear hybrid SDDEs. It is therefore a breakthrough in the stability
study of highly nonlinear hybrid SDDEs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay is encountered in many real-world systems in
science and industry. Differential delay equations (DDEs) (or more
generally, functional differential equations) have been developed
to model such time-delay systems. Time-delay often causes
undesirable system transient response, or even instability. Stability
of DDEs has hence been studied intensively formore than 50 years.
The stability criteria are often classified into two categories: delay-
dependent and delay-independent stability criteria. The delay-
dependent stability criteria take into account the size of delays and
hence are generally less conservative than the delay-independent
ones which work for any size of delays. There is a very rich
literature in this area (see, e.g., Fridman, 2014; Hale & Lunel, 1993;
Kolmanovskii & Nosov, 1986).

In 1980’s, stochastic differential delay equations (SDDEs) were
developed in order to model real-world systems which contain
someuncertainties or are subject to external noises (see, e.g., Ladde
& Lakshmikantham, 1980; Mao, 1991, 1994, 2007; Mohammed,
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1984). Since then, stability has been one of the most important
topics in the study of SDDEs. As the literature in this area is huge
and lots of papers are of open-access, there is no need to cite any
reference here.

In 1990’s, hybrid SDDEs (also known as SDDEs with Markovian
switching) were used to model real-world systems where they
may experience abrupt changes in their structure and parameters
in addition to time delays and uncertainties. One of the important
issues in the study of hybrid SDDEs is the automatic control, with
consequent emphasis being placed on the analysis of stability.
Once again, the delay-dependent stability criteria have been
established by many authors (see, e.g., Mao, Lam, & Huang, 2008;
Mao & Yuan, 2006; Xu, Lam, & Mao, 2007; Yue & Han, 2005).
To our best knowledge, a common feature of the existing delay-
dependent stability criteria is that they can only be applied to
the hybrid SDDEs where their coefficients are either linear or
nonlinear but bounded by linear functions (namely, satisfy the
linear growth condition). In other words, there is so far no delay-
dependent stability criterion on nonlinear hybrid SDDEs without
the linear growth condition (we will refer to such equations as
highly nonlinear ones). For example, consider the scalar highly
nonlinear hybrid SDDE

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt
+ g(x(t), x(t − δ(t)), r(t), t)dB(t). (1.1)
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Here x(t) ∈ R is the state, δ : R → [0, τ ] stands for variable time
delay, B(t) is a scalar Brownian motion, r(t) is a Markov chain on
the state space S = {1, 2} with its generator

Γ =


−1 1
8 −8


, (1.2)

and we will refer to r(t) as the mode of the system. Moreover, the
coefficients f and g are defined by

f (x, y, 1, t) = −y − 3x3, f (x, y, 2, t) = y − 2x3,

g(x, y, 1, t) = y2, g(x, y, 2, t) = 0.5y2. (1.3)

If there is no time-delay, namely δ(t) = 0, then this hybrid
SDDE becomes hybrid SDE and the computer simulation shows
it is asymptotically stable; while if the time-delay is large, say
δ(t) = 2, the computer simulation shows that the hybrid SDDE
is unstable (but we here omit simulation outputs due to the page
limit). In other words, whether the hybrid SDDE is stable or not
depends onhowsmall or large the time-delay is. On the other hand,
both drift and diffusion coefficients of the hybrid SDDE are highly
nonlinear. However, there is no delay dependent criterion which
can be applied to the SDDE to derive a sufficient bound on the
time-delay δ(t) for the SDDE to be stable.

We should point out that there are already some papers on the
asymptotic stability of highly nonlinear hybrid SDDEs (see, e.g., Hu,
Mao, & Shen, 2013; Hu, Mao, & Zhang, 2013; Liu, 2012; Luo, Mao,
& Shen, 2011) but these existing results are all delay independent.
Our paper is the first to establish delay dependent criteria for
highly nonlinear hybrid SDDEs. It is therefore a breakthrough in
the stability study of highly nonlinear hybrid SDDEs. Let us begin
to establish our new theory.

2. Notation and standing hypotheses

Throughout this paper, unless otherwise specified, we use the
following notation. If A is a vector or matrix, its transpose is
denoted by AT . If x ∈ Rn, then |x| is its Euclidean norm. If A
is a matrix, we let |A| =


trace(ATA) be its trace norm. Let

R+ = [0, ∞). For h > 0, denote by C([−h, 0]; Rn) the family
of continuous functions ϕ from [−h, 0] → Rn with the norm
∥ϕ∥ = sup−h≤u≤0 |ϕ(u)|. If both a, b are real numbers, then a∧b =

min{a, b} and a ∨ b = max{a, b}. If A is a subset of Ω , denote
by IA its indicator function; that is IA(ω) = 1 if ω ∈ A and 0
otherwise. Let (Ω, F , {Ft}t≥0, P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is
increasing and right continuous while F0 contains all P-null sets).
Let B(t) = (B1(t), . . . , Bm(t))T be an m-dimensional Brownian
motion defined on the probability space. Let r(t), t ≥ 0, be a
right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, . . . ,N} with generator
Γ = (γij)N×N , Here γij ≥ 0 is the transition rate from i to j if
i ≠ j while γii = −


j≠i γij. We assume that the Markov chain

r(·) is independent of the Brownian motion B(·). Let τ > 0 and
δ̄ ∈ [0, 1) be two constants. Let δ be a differentiable function from
R+ → [0, τ ] such that δ̇(t) := dδ(t)/dt ≤ δ̄ for all t ≥ 0. Let
f : Rn

× Rn
× S × R+ → Rn and g : Rn

× Rn
× S × R+ → Rn×m

be Borel measurable functions. Consider an n-dimensional hybrid
SDDE

dx(t) = f (x(t), x(t − δ(t)), r(t), t)dt
+ g(x(t), x(t − δ(t)), r(t), t)dB(t) (2.1)

on t ≥ 0 with initial data

x̃0 = ξ ∈ C([−τ , 0]; Rn) and r(0) = i0 ∈ S, (2.2)

where x̃0 := {x(t) : −τ ≤ t ≤ 0}. The classical conditions
for the existence and uniqueness of the global solution are the

local Lipschitz condition and the linear growth condition (see, e.g.,
Mao, 1991, 1994, 2007; Mao & Yuan, 2006). In this paper, we need
the local Lipschitz condition. However, we will consider highly
nonlinear SDDEswhich, in general, do not satisfy the linear growth
condition in this paper. We therefore impose the polynomial
growth condition, instead of the linear growth condition. Let us
state these conditions as an assumption for the use of this paper.

Assumption 2.1. Assume that for any b > 0, there exists a positive
constant Kb such that

|f (x, y, i, t) − f (x̄, ȳ, i, t)| ∨ |g(x, y, i, t) − g(x̄, ȳ, i, t)|
≤ Kb(|x − x̄| + |y − ȳ|) (2.3)

for all x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ b and all
(i, t) ∈ S × R+. Assume moreover that there exist three constants
K > 0, q1 ≥ 1 and q2 ≥ 1 such that

|f (x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),
|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2) (2.4)

for all (x, y, i, t) ∈ Rn
× Rn

× S × R+.

Of course, if q1 = q2 = 1 then condition (2.4) is the familiar
linear growth condition. However, we emphasize once again that
we are here interested in highly nonlinear SDDEs which have
either q1 > 1 or q2 > 1. We will refer condition (2.4) as the
polynomial growth condition. It is known that Assumption 2.1
only guarantees that the SDDE (2.1) with the initial data (2.2) has
a unique maximal solution, which may explode to infinity at a
finite time. To avoid such a possible explosion, we need to impose
an additional condition in terms of Lyapunov functions. For this
purpose, we need more notation.

Let C2,1(Rn
× S × R+; R+) denote the family of non-negative

functions U(x, i, t) defined on (x, i, t) ∈ Rn
× S × R+ which

are continuously twice differentiable in x and once in t . For such
a function U , we will let Ut =

∂U
∂t , Ux = ( ∂U

∂x1
, . . . , ∂U

∂xn
) and

Uxx = ( ∂2U
∂xk∂xl

)n×n. Let C(Rn
× [−τ , ∞); R+) denote the family of

all continuous functions from Rn
× [−τ , ∞) to R+. We can now

state another assumption.

Assumption 2.2. Assume that there exists a pair of functions Ū ∈

C2,1(Rn
× S × R+; R+) and G ∈ C(Rn

× [−τ , ∞); R+), as well as
positive numbers c1, c2, c3 and q ≥ 2(q1 ∨q2) (where q1 and q2 are
the same as in Assumption 2.1), such that

c3 < c2(1 − δ̄); (2.5)

|x|q ≤ Ū(x, i, t) ≤ G(x, t) (2.6)

for (x, i, t) ∈ Rn
× S × R+; and

LŪ(x, y, i, t) := Ūt(x, i, t) + Ūx(x, i, t)f (x, y, i, t)

+
1
2
trace[gT (x, y, i, t)Ūxx(x, i, t)g(x, y, i, t)]

+

N
j=1

γijŪ(x, j, t)

≤ c1 − c2G(x, t) + c3G(y, t − δ(t)) (2.7)

for (x, y, i, t) ∈ Rn
× Rn

× S × R+.

We now cite a theorem fromHu,Mao, and Shen (2013, Theorem
4.3), which shows the unique global solution of the SDDE (2.1) and
its qth moment property under the above assumptions.

Theorem 2.3. Under Assumptions 2.1 and 2.2, the SDDE (2.1) with
the initial data (2.2) has the unique global solution x(t) on t ≥ −τ
and the solution has the property that sup−τ≤t<∞ E|x(t)|q < ∞.
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