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a b s t r a c t

The paper deals with the co-design of a control policy, composed by both the state feedback and the
switching control law, for discrete-time switched linear systems. Constructive conditions are given
that are necessary and sufficient for the stabilizability of systems which are periodic stabilizable. The
conditions are in form of a Linear Matrix Inequality (LMI) problemwhose solution provides the switching
law and a family of state feedback gains stabilizing the system as well as a bound on the exponential
decreasing rate. The effectiveness of the proposed technique is illustrated by comparison with results
from the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are characterized by a dynamics that changes
with time among a finite number of different modes (Liberzon,
2003). Switched systems attracted a notable research interest due,
on the one hand, to their capability of modeling complex real
systems, such as networked and embedded systems, and on the
other hand to their dynamical properties, non-trivial to analyze
and to design (Liberzon, 2003; Sun & Ge, 2011).

Stability and stabilizability are central issues of the literature
on switched systems, see Sun and Ge (2011) and the survey Lin
and Antsaklis (2009). Many results are available for the problem of
stability of autonomous switched systemswith arbitrary switching
law, like the joint spectral radius analysis (Jungers, 2009), and
the necessary and sufficient conditions given in Molchanov and
Pyatnitskiy (1989). The latter work in particular assessed that
the existence of polyhedral, hence convex, Lyapunov functions
is necessary and sufficient for the stability. On the other hand
convex functions are proved to be conservative for switched
systems with switching law as control input, see Blanchini and
Savorgnan (2008). In this context many results are based on the
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min-switching policy, see Liberzon (2003), that leads to nonconvex
control Lyapunov functions that are minimum of quadratics.
Such functions are obtained as solutions to LMI conditions in
Daafouz, Riedinger, and Iung (2002), to Lyapunov–Metzler BMI
conditions in Geromel and Colaneri (2006), Heemels, Kundu, and
Daafouz (2016) and through an LQR iterative procedure in Sun
and Ge (2011). The latter also proved that the existence of a
minimum quadratic Lyapunov function is necessary and sufficient
for stabilizability. Another necessary and sufficient condition,
based in set-theory, appeared in Fiacchini and Jungers (2014).
Some of the cited conditions and novel LMI ones are analyzed and
compared in Fiacchini, Girard, and Jungers (2016). The problem of
co-designing both the switching law and the control input, is even
more involved than the problem of stabilizability of autonomous
switched systems. This kind of problem has been addressed in
several works. Some approaches consist in fixing the complexity
of the Lyapunov function candidates and of the control policy
in function of the number of modes, as in Daafouz et al. (2002)
and Deaecto, Geromel, and Daafouz (2011); Deaecto, Souza, and
Geromel (2015). Techniques based on approximating the LQR
control are presented in Antunes and Heemels (2016) and Zhang,
Abate, Hu, and Vitus (2009); Zhang, Hu, and Abate (2012).

This paper deals with the co-design of the switching law and
the feedback control for non-autonomous switched linear systems.
The results are based on the convex conditions for stabilization
of autonomous systems presented in Fiacchini et al. (2016), that
are necessary and sufficient for periodic stabilizable systems. The
problem is treated by providing an analogous LMI condition for
stabilizability that is proved to be necessary and sufficient for
systems that are periodic stabilizable through co-design. The LMI
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condition is constructive and its solution provides the control
policy. The main limitation of the approach lies in its complexity
that depends on the number of sequences of modes, which
grows combinatorially with their maximal length considered. The
method is compared with the approach presented in Zhang et al.
(2009, 2012) and with Lyapunov–Metzler approach.

Notation: Given n ∈ N, define Nn = {j ∈ N : 1 ≤ j ≤ n}. The
Euclidean-norm in Rn is ∥x∥. The ith element of a finite set of ma-
trices is denoted as Ai. The set of q switching modes is I = Nq, all
the possible sequences of modes of length N is I N

=
N

j=1 I , and
|σ | = N if σ ∈ I N . Given N ∈ N, NI =

N
k=1 q

k is the number
of elements in I [1:N]. Given σ ∈ I N , define: Aσ =

N
j=1 Aσj =

AσN · · · Aσ1 , and define
N

j=M Aσj = I if M > N . Given a ∈ R, the
maximal integer smaller than or equal to a is ⌊a⌋.

2. Preliminaries and problem formulation

Consider the discrete-time switched linear system

xk+1 = Aσkxk + Bσkuk, (1)

where xk ∈ Rn and uk ∈ Rm are the state and the control input at
time k ∈ N, respectively; σ : N → I is the switching law and
{Ai}i∈I and {Bi}i∈I , with Ai ∈ Rn×n and Bi ∈ Rn×m for all i ∈ I .
A time-varying control policy ν : Rn

× N → I × Rm×n, is such
that ν(x, k) =


σ(x, k), K(x, k)


∈ I ×Rm×n, where K(x, k) is the

state feedback gain, i.e. such that uk(xk) = K(xk, k)xk and then the
feedback law may change at every instant.

Remark 1. As proved in Zhang et al. (2009), see Theorems 5 and
7 in particular, the attention can be restricted without loss of
generality to static control policies of the form

ν(x) =

σ(x), K(x)


∈ I × Rm×n, (2)

such that ν(ax) = ν(x) for all x ∈ Rn and a ∈ R, and to piecewise
quadratic Lyapunov functions. Moreover K(x) belongs to a finite
set i.e. K(x) ∈ K = {κi}i∈NM , withM ∈ N.

The switched system in closed loop with (2) reads

xk+1 =

Aσ(xk) + Bσ(xk)K(xk)


xk, (3)

where σ(xk) = σk. We denote with xν
k(x0) ∈ Rn the state of the

system (1) at time k starting from x(0) = x0 by applying the control
policy ν. Given σ ∈ I D we denote with xσ

k (x0) the state of (3) at
time k ≤ D starting at x0 under the switching sequence σ . The
dependence of xν

k and xσ
k on the initial conditions will be dropped

when clear from the context.

Definition 1. The system (1) is globally exponentially stabilizable
if there are a control policy ν(x) as in (2), c ≥ 0 and λ ∈ [0, 1) such
that ∥xν

k(x0)∥ ≤ cλk
∥x0∥, for all x0 ∈ Rn, with xk state of (3).

Some recent results from Fiacchini et al. (2016) concerning
the stabilizability of autonomous switched linear systems xk+1 =

Aσkxk, withσk ∈ I , are recalled hereafter sincewidely employed in
the following. A periodic switching law for the system xk+1 = Aσkxk
is given by σ(k) = ip(k) and p(k) = k − D ⌊k/D⌋ + 1, with D ∈ N
and i ∈ I D, which means that the sequence of modes given by i
repeats cyclically in time.

Definition 2. The system xk+1 = Aσkxk is periodic σ -stabilizable
if there exist a periodic switching law σ : N → Nq, c ≥ 0 and
λ ∈ [0, 1) such that ∥xσ

k (x)∥ ≤ cλk
∥x∥ holds for all x ∈ Rn.

For periodic σ -stabilizability a periodic, state-independent sta-
bilizing switching law must exists, whereas it could not exist for
generic σ -stabilizability. One of the main results provided in Fiac-
chini et al. (2016) is a necessary and sufficient condition for peri-
odic σ -stabilizability in form of LMI.

Theorem 1. A periodic σ -stabilizing switching law for the system
(1) exists if and only if there exist N ∈ N and η ∈ RNI , with η ≥ 0,
such that


i∈I [1:N] ηi = 1 and

i∈I [1:N]

ηiAT
i Ai < I. (4)

In this paper, we are not interested in determining periodic
stabilizing switching laws but on computing a state-dependent
control policy whenever the system admits a periodic stabilizing
switching sequence.

Remark 2. The condition (4) can be used to determine if a periodic
σ -stabilizing switching law exists, but such a switching law
could be very poor in terms of convergence and very complex,
as its length can be very high. In fact, supposing that (4) is
satisfied or equivalently that there exists µ ∈ [0, 1) such that

i∈I [1:N] ηiAT
i Ai ≤ µI , the periodic sequence length is bounded

by pN with p such that µpn < 1 (see the proof of Theorem 22
in Fiacchini et al., 2016), which can be very big for high values of
µ. Moreover, the convergence can be very slow (see examples in
Fiacchini et al., 2016).

Thus, if, on the one hand, periodic σ -stabilizability is more
conservative than generic σ -stabilizability, on the other hand, the
equivalent condition is much more computationally tractable, see
Section 4. Indeed, the condition in case of periodic σ -stabilizability
is an LMI in the parameter N that might be much smaller than
the periodic cycle length. In this paper we focus on a condition
analogous to the LMI one (4) for the controlled switched system (1).
The aim is to provide an LMI problem whose solution determines
a stabilizing control policy (2) for periodic stabilizable systems.

3. Switched state-dependent control policy

The following lemma is functional for the main results
presented in this paper. Its proof is based on the elimination (or
projection) lemma, see Boyd, El Ghaoui, Feron, and Balakrishnan
(1994), analogously to what done in Pipeleers, Demeulenaere,
Swevers, and Vandenberghe (2009). The elimination lemma claims
that there exists X ∈ Rm×m satisfyingUTXV +V TXTU+Z > 0with
Z ∈ Rn×n symmetric, if and only if

NT
u ZNu > 0, NT

v ZNv > 0, (5)
with Nu,Nv ∈ Rn×m such that UNu = 0 and VNv = 0.

Lemma 1. GivenMi ∈ Rn×n, with i ∈ Np, and the nonsingularmatrix
P ∈ Rn×n, the inequality

ηPTMT
1 . . .MT

pMp . . .M1P < I,

with η > 0, holds if and only if there exist Gi ∈ Rn×n, with i ∈ Np−1,
such that

ηI MpGp−1 · · · 0 0 0
GT
p−1M

T
p Gp−1 + GT

p−1 · · · 0 0 0
. . . · · · · · · · · · · · · · · ·

0 0 · · · G2 + GT
2 M2G1 0

0 0 · · · GT
1M

T
2 G1 + GT

1 ηM1

0 0 · · · 0 ηMT
1 (PPT )−1


> 0 (6)

is satisfied.
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