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a b s t r a c t

This paper is concerned with the problem of robust stability of uncertain linear time-invariant systems in
polytopic domains. Themain contribution is to present a systematic procedure to check the stability of the
uncertain systems by using an arbitrary number of quadratic functions within higher order derivatives
of the vector field in the continuous-time case and higher order differences of the vector field in the
discrete-time case. The matrices of the Lyapunov function appear decoupled from the dynamic matrix of
the system in the conditions. This fact leads to sufficient conditions that are given in terms of LinearMatrix
Inequalities defined at the vertices of the polytope. The proposed method does not impose sign condition
constraints in the quadratic functions that compose the Lyapunov function individually. Moreover, some
of the quadratic functions do not decrease monotonically along trajectories. However, if the sufficient
conditions are satisfied, then a monotonic standard Lyapunov function that depends on the dynamics of
the uncertain system can be constructed a posteriori. Numerical examples from the literature are provided
to illustrate the proposed approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Lyapunov theory has proven to be a powerful tool to guarantee
the stability of dynamical systems (Khalil, 2002). Most of the
results for stability analysis presented in the literature search
for a standard Lyapunov function, i.e., one that must be positive
definite andmust decreasemonotonically along trajectories. Some
few works have raised the question of why should we require
the Lyapunov function to decrease monotonically. In Butz (1969),
the problem of inferring asymptotic stability for continuous-time
systems has been addressed without requiring the first derivative
of the Lyapunov function to be negative definite. Instead of that,
a condition based on the existence of a three times continuously
differentiable Lyapunov function has been proposed. Theworkwas
extended inMeigoli and Nikravesh (2009) to consider higher order
derivatives of the Lyapunov function. However, in both cases the
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use of higher order derivative of the Lyapunov function has led to
non-convex conditions, that rely on the search of scalar parameters
and the Lyapunov function at the same time. In Ahmadi and Parrilo
(2011) it has been shown that once the conditions in Butz (1969)
and Meigoli and Nikravesh (2009) are satisfied, then a standard
Lyapunov function can be constructed. The Lyapunov function is
parameterized by higher order derivatives of the vector field. It
was demonstrated that convex conditions based on the existence
of this structured Lyapunov function can be obtained to solve the
problem. The counterpart of this result for discrete-time, using
higher order differences of the vector field, has been presented
in Ahmadi and Parrilo (2008). It is also worth mentioning the
work in Sassano and Astolfi (2013) that proposes the use of
dynamic Lyapunov functions to characterize the stability of linear
and nonlinear systems and the recent approach (Chesi, 2015)
that does not rely on the use of Lyapunov functions and can
provide a certificate of instability for uncertain systems by means
of semidefinite programming and determinants of matrices.

The well known quadratic stability condition has been used as
the first method to certify the stability of linear time invariant
(LTI) uncertain systems in polytopic domains (Barmish, 1985).
However, the use of a common Lyapunov matrix to assure the
stability for all the uncertain domain can be conservative in some
cases. To reduce the conservatism of the conditions, the main
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developments were in the sense of improving the structure of the
Lyapunovmatrix, considering affine Lyapunov functions (Geromel,
de Oliveira, & Hsu, 1998; Leite & Peres, 2003; Peaucelle, Arzelier,
Bachelier, & Bernussou, 2000) and polynomially parameter-
dependent Lyapunov functions (Chesi, 2008; Chesi, Garulli, Tesi,
& Vicino, 2005; Oliveira & Peres, 2006, 2007; Scherer, 2006) to
assure the stability of uncertain systems. In another direction, the
authors in Lee, Park, and Joo (2011) have developed an approach
to compute stability of LTI uncertain systems using higher order
derivatives of the Lyapunov function. As in Meigoli and Nikravesh
(2009), the conditions proposed in Lee et al. (2011) depend on
scalar parameters, which is the main drawback of the method
accordingly to the authors. An algorithm to minimize the effects
of the scalar search has been employed, but the results can still be
conservative.

In Ebihara, Peaucelle, Arzelier, and Hagiwara (2005) higher
order time-derivatives of the states (limited to third order
derivatives) have been used to construct a Lyapunov function. The
workwas extended in Peaucelle, Arzelier, Henrion, andGouaisbaut
(2007), considering a Lyapunov function composed by a generic
number of higher order time-derivatives of the states, to deal with
the problem of topological separation. Another related work is
(Ebihara, Peaucelle, & Arzelier, 2015, Chapter 2), that addresses
the robust performance analysis of LTI uncertain systems using
conditions with the presence of slack variables. In the main results
comments will be provided to clarify the relation between the
proposed approach and the use of time-derivatives of the states
to construct Lyapunov functions. At this point, it is important to
remember that the development of efficient stability conditions is
the first step towards achieving effective synthesis conditions.

This paper provides a systematic procedure to check the
stability of LTI uncertain systems in polytopic domains. The
conditions are based on the existence of a Lyapunov function
composed by a generic number of quadratic functions. Higher
order derivatives (differences) of the vector field in the continuous-
time (discrete-time) case are employed. The quadratic functions do
not have sign condition constraints individually, and some of them
do not decrease monotonically. The proposed method decouples
the matrices of the Lyapunov function from the dynamic matrix
of the uncertain system, preventing the computation of power of
uncertain matrices that show up in the higher order derivatives
of the vector field. This fact leads to sufficient conditions that
are given in terms of Linear Matrix Inequalities (LMIs) defined at
the vertices of the polytope. If the conditions are fulfilled, then
a monotonic Lyapunov function that depends on the dynamic
matrix of the system can be constructed a posteriori. The proposed
approach also contains as particular cases some well known
conditions from the literature. Numerical experiments show the
potential of the technique of requiring a smaller number of scalar
decision variables and LMI rows to certify the stability of uncertain
systems.

Notation. For two symmetricmatrices of same dimensionsA and B,
A > Bmeans that A− B is positive definite. For matrices or vectors
(T ) indicates transpose. Matrix He(Z) = Z + ZT is used to simplify
the developments. In continuous-time case, V p(x) represents the
derivative of order p of the functionV (x), while in the discrete-time
case V p(x) represents the function V (x)1 evaluated at the instant p.
A ⊗ B represents the Kronecker product between A and B. The
factorial of d is denoted by d!. Identity (null) matrices of dimension
n × n (n × m) are denoted by In (0n×m).

1 For simplicity of notation, the dependence of V (x) on x is omitted in some of
the formulations.

2. Background

Consider the dynamical system

δ [x] = f (x) (1)

where x ∈ Rn is the state vector and f : Rn
→ Rn. The operator

δ[x] denotes the time-derivative for continuous-time systems and
the shift operator for discrete-time systems. We are interested in
verifying if f (0) = 0 is the unique stable equilibrium point of the
system, i.e., if the system is globally asymptotically stable (GAS).
Before introducing the main problem of this paper, let us state
some results presented in the literature that make use of higher
order derivatives (differences) of the vector field in the continuous-
time (discrete-time) case to infer GAS of (1).

The first result can be seen as a generalization of the conditions
proposed in Butz (1969) andMeigoli and Nikravesh (2009) and has
been presented in Ahmadi and Parrilo (2011). Instead of search
for scalar parameters and just one single function V (x), convex
conditions were obtained by using different functions Vi(x), as
stated in the next lemma.

Lemma 1 (Ahmadi & Parrilo, 2011). If there exists a radially
unbounded function W (x) such that

W (x) = VN
N+1(x) + V (N−1)

N (x) + · · · + V̇2(x) + V1(x)

W (0) = 0, W (x) > 0, Ẇ (x) < 0, ∀x ≠ 0

then the origin is a GAS equilibrium point of (1) and W (x) is a
standard Lyapunov function.

Note that Lemma 1 does not require sign condition for any
individual function Vi(x), i = 1, . . . ,N + 1. Moreover, W (x) is a
standard Lyapunov function that has been parameterized in a very
special way using derivatives of the vector field, which show up in
the derivatives of the functions Vi(x).

Concerning the discrete-time case, the following condition is of
interest to our work

Lemma 2 (Ahmadi & Parrilo, 2008). If there exist continuous
functions V1, . . . , VN+1 : Rn

→ R such that
N+1

i=1 iVi(0) = 0,

N+1
i=j

Vi radially unbounded for j = 1, . . . ,N + 1

N+1
i=j

Vi > 0 ∀x ≠ 0 for j = 1, . . . ,N + 1

(V k+N+1
N+1 − V k

N+1) + · · · + (V k+1
1 − V k

1 ) < 0

then the origin is a GAS equilibrium point of (1) and W k(x) =N+1
j=1

N+1
i=j V k+j−1

i is a standard Lyapunov function.

3. Problem formulation

Consider the following linear time invariant uncertain system

δ[x] = A(α)x (2)

where x ∈ Rn is the state vector. The uncertainmatrixA(α) belongs
to a polytopic domain parameterized in terms of a time-invariant
vector α, being given by

A(α) =

Z
z=1

αzAz, α ∈ ΛZ (3)



Download	English	Version:

https://daneshyari.com/en/article/4999856

Download	Persian	Version:

https://daneshyari.com/article/4999856

Daneshyari.com

https://daneshyari.com/en/article/4999856
https://daneshyari.com/article/4999856
https://daneshyari.com/

