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a b s t r a c t

In this paper,we address the robustminimal controllability problem,where the goal is, given a linear time-
invariant system, to determine aminimal subset of state variables to be actuated to ensure controllability
under additional constraints. We study the problem of characterizing the sparsest input matrices that
assure controllability, when the autonomous dynamics’ matrix is simple when a specified number of
inputs fail. We show that this problem is NP-hard, and under the assumption that the dynamics’ matrix is
simple, we show that it is possible to reduce the problem to a set multi-covering problem. Additionally,
under this assumption, we prove that this problem is NP-complete, and polynomial algorithms to
approximate the solutions of a set multi-covering problem can be leveraged to obtain close-to-optimal
solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of guaranteeing that a dynamical system can be
driven toward the desired state regardless of its initial position is a
fundamental question studied in control systems and it is referred
to as controllability. Several applications, for instance, control pro-
cesses, multi-agents networks, control of large flexible structures,
systems biology and power systems (Egerstedt, 2011; Siljak, 2007;
Skogestad, 2004) rely on the notion of controllability to safeguard
their proper functioning. Subsequently, it is important to identify
which subsets of state variables need to be actuated, or what
is the placement of actuators required, to ensure controllability
(Olshevsky, 2014; Pequito, Kar, & Aguiar, 2016a; van de Wal &
de Jager, 2001).

Moreover, actuators may malfunction over time due to the
adverse nature of the environments where the actuators are de-
ployed, e.g. due to the wear and tear of the materials, or due to
external (adversarial) influence of an agent aiming to disrupt the
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proper functioning of the dynamical system. In fact, a classical
example of such malicious attack is the Stuxnet malware inci-
dent (Langner, 2011), in which the controller’s input response
to a tempered measured output lead the system away from its
normal operating conditions. Thus, the control designer needs to
consider such scenarios, while accounting for the actuator place-
ment (Velde & Carignan, 1984). Additionally, as the systems be-
come larger (i.e., the dimension of their state space), we aim to
identify a relatively small subset of state variables that ensure
the controllability of the system, for instance, due to economic
constraints (Olshevsky, 2014). Consequently, in this paper we
address the following natural design question:

Q1: What is the minimum number of actuated state variables we
need to consider to ensure the controllability of a dynamical system if
a specific number of actuators failures occur?

To formally capture Q1, we introduce and study the robust
minimal controllability problem (rMCP) that aims to determine the
minimum number of state variables that need to be actuated to
ensure system’s controllability, under the possible failure of a spec-
ified number of actuators. This is a generalization of the minimal
controllability problem (MCP) (Olshevsky, 2014), which can be
obtained as a particular case of the rMCP when no actuator fails.
Therefore, the MCP is the first step to understand resilience and
robustness properties of dynamical systems since it unveils which
variables need to be actuated.
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Finally, it is important to mention that the rMCP can be stated
regarding observability, by invoking the duality between control-
lability and observability in LTI systems (Hespanha, 2009). In par-
ticular, Chen, Kar, and Moura (2015), Fawzi, Tabuada, and Diggavi
(2014) and Shoukry and Tabuada (2014) provide necessary and
sufficient conditions concerning the sensor deployment to ensure
that a reliable estimate of the system is recovered. More impor-
tantly, those conditions can be achieved by design, when solving
the rMCP. Hence, guaranteeing the design of stable observers to
proper monitor the state evolution of an LTI system. Furthermore,
the results presented in this paper are for discrete-time, but they
are readily applicable to continuous-time LTI systems.

RelatedWork: This paper follows up and subsumes previous liter-
ature by considering the deployment of actuators to ensure con-
trollability under possible actuation failures. When no actuators
fail, it extends the results available for the MCP, as we overview
next. In Nabi-Abdolyousefi and Mesbahi (2013) the controlla-
bility of circulant networks is analyzed by exploring the Popov–
Belevitch–Hautus eigenvalue criterion, where the eigenvalues are
characterized using the Cauchy–Binet formula. The controllability
in multi-agents with Laplacian dynamics was initially explored
in Tanner (2004). Later, in Egerstedt, Martini, Cao, Camlibel, and
Bicchi (2012) and Rahmani, Ji, Mesbahi, and Egerstedt (2009),
necessary and sufficient conditions are given in terms of partitions
of the Laplacian graph. In Parlangeli and Notarstefano (2012), the
controllability is explored for paths and cycles, and later extended
by the same authors to the controllability of grid graphs by means
of reductions and symmetries of the graph (Notarstefano & Parlan-
geli, 2013), and considering dynamics that are scaled Laplacians.
In Kibangou and Commault (2014) and Zhang, Camlibel, and Cao
(2011), the controllability is studied for strongly regular graphs and
distance-regular graphs. Recently, new insights on the controllabil-
ity of Laplacian dynamics are given regarding the uncontrollable
subspace, in Aguilar and Gharesifard (2015) and Chapman and
Mesbahi (2014). In addition, in Pasqualetti and Zampieri (2014)
the controllability of isotropic and anisotropic networks is ana-
lyzed.

Furthermore, Aguilar and Gharesifard (2015) conclude by
pointing out that further study of non-symmetric dynamics and
controllability is required — which we address in the present
paper. Therefore,we consider amuch less restrictive assumption:A
is a simple matrix, i.e., all of its eigenvalues are distinct. Moreover,
there are several applications where A satisfies this assumption,
for instance, all dynamical systems modeled as random networks
of the Erdős–Rényi type (Tao & Vu, 2017), as well as several
known dynamical systems used as benchmarks in control systems
engineering (Ogata, 2001; Siljak, 1991, 2007).

Observe that the MCP problem presents both continuous and
discrete optimization properties, captured by the controllability
property and the number of non-zero entries, respectively. To
avoid the nature of this problem, in Olshevsky (2014), the non-
zero entries of the input matrix were randomly generated. In the
present paper, we ‘decouple’ the continuous and discrete opti-
mization properties, and show that by first solving the discrete
nature of the problem, it is always possible to deterministically
obtain a solution to MCP in a second phase. Besides, the first step
reduces the MCP to the set covering problem — well known to
be NP-hard. Nonetheless, the set covering problem is one of the
most studied NP-hard problems (probably second only to the SAT
problem). Subsequently, although the set covering problem is NP-
hard, some subclasses of the problem are equipped with sufficient
structure that can be leveraged to invoke a polynomial algorithm
that approximate the solution with ‘almost’ optimality guaran-
tees (Brönnimann & Goodrich, 1995). This contrasts with the
approach proposed in Olshevsky (2014), where an approximated
solution particular to the MCP problem was provided. In addition,

we study the rMCP which has not been previously addressed in
the literature. Similarly to the MCP, we show that the rMCP can
be polynomially reduced to the set multi-covering problem, i.e., a
set covering problem that allows the same elements to be covered
a predefined number of times. Furthermore, extensions of poly-
nomial approximation algorithms are also available with similar
optimality guarantees.

Alternatively, when the parameters of the LTI system are not
exactly known, and assumed to be independent, structural systems
theory (Dion, Commault, & der Woude, 2003) can be used to
address theMCP and rMCPwhile ensuring structural controllability,
see Liu, Pequito, Kar, Sinopoli, and Aguiar (2015) and Pequito,
and Kar et al. (2016), respectively. Notwithstanding, the tools and
conditions to ensure structural controllability are quite different
from those adopted in this paper, and a solution to the MSCP is
not necessarily a solution to the MCP when the dynamics’ matrix
is simple (Pequito, Ramos, Kar, Aguiar, & Ramos, 2016b). ◦

Main Contributions of the present paper are as follows: (i) we
characterize the exact solutions to the MCP; (ii) we show that for a
given dynamics’ matrix almost all input vectors satisfying a speci-
fied structure are solutions to theMCP; (iii) we show that the rMCP
is an NP-hard problem; (iv) we characterize the exact solutions
to the rMCP; (v) we prove that the decision version of both MCPs
are NP-complete; (vi) we provide approximated solutions to the
rMCPs and discuss their optimality guarantees; and, finally, in (vii)
we discuss the limitations of the proposed methodology. ◦

The remainder of this paper is organized as follows. In Section 2,
we formally state the rMCP addressed in this paper. Next, in Sec-
tion 3,we review some concepts required to prove themain results
of this paper. In Section 4,we present themain results of this paper,
i.e., we characterize the solutions to the rMCP, its complexity, and
a polynomial algorithm that approximates the solutions. Finally,
in Section 5, we provide some examples that illustrate the main
results of the paper and discuss the limitations of the proposed
methodology.

Notation: We denote vectors by small font letters such as v, w, b
and its corresponding entries by subscripts. A collection of vectors
is denoted by {vj

}j∈J , where the superscript indicates an enumer-
ation of the vectors using indices from a set such as I,J ⊂ N.
The number of elements of a set S is denoted by |S|. We denote
by In the n-dimensional identity matrix. Given a matrix A, σ (A)
denotes the set of eigenvalues of A, the spectrum of A. Given two
matrices M1 ∈ Cn×m1 and M2 ∈ Cn×m2 , the matrix [M1 M2] is
the n × (m1 + m2) concatenated complex matrix. The structural
pattern of a vector/matrix or a structural vector/matrix have their
entries in {0, ⋆}, where ⋆ denotes a non-zero entry, and they are
denoted by a vector/matrix with a bar on top of it. We denote by
A⊺ the transpose of A. The function · : Cn

× Cn
→ C denotes the

usual inner product in Cn, i.e., v · w = v†w, where v† denotes the
adjoint of v (the conjugate of v⊺). With some abuse of notation,
· : {0, ⋆}n×{0, ⋆}n → {0, ⋆} also denotes themapwhere v̄ ·w̄ ̸= 0,
with v̄, w̄ ∈ {0, ⋆}n if and only if there exists i ∈ {1, . . . , n} such
that v̄i = w̄i = ⋆. Additionally, ∥v∥0 denotes the number of non-
zero entries of the vector v in either {0, ⋆}n orRn. Given a subspace
H ⊂ Cn we denote by Hc its complement with respect to C,
i.e., Hc

= Cn
\ H. With abuse of notation, we will use inequalities

involving structural vectors as well — for instance, we say v̄ ≥ w̄
for two structural vectors v̄ and w̄ if and the only if the following
two conditions hold: (i) if w̄i = 0, then v̄i ∈ {0, ⋆}, and (ii) if w̄i = ⋆
then v̄i = ⋆.

2. Problems statement

Under the adverse scenarios of failure or malicious temper of
the actuators, the dynamics of the system can be modeled by

x(k+ 1) = Ax(k)+ BM\Au(k), (1)
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