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a b s t r a c t

This paper dealswith the problemof finding a low-complexity estimate of the impulse response of a linear
time-invariant discrete-time dynamic system from noise-corrupted input–output data. To this purpose,
we introduce an identification criterion formedby the average (over the input perturbations) of a standard
prediction error cost, plus an ℓ1 regularization term which promotes sparse solutions. While it is well
known that such criteria do provide solutionswithmany zeros, a critical issue in our identification context
iswhere these zeros are located, since sensible low-order models should be zero in the tail of the impulse
response. The flavor of the key results in this paper is that, under quite standard assumptions (such as
i.i.d. input and noise sequences and system stability), the estimate of the impulse response resulting
from the proposed criterion is indeed identically zero from a certain time index nl (named the leading
order) onwards, with arbitrarily high probability, for a sufficiently large data cardinality N . Numerical
experiments are reported that support the theoretical results, and comparisons aremadewith some other
state-of-the-art methodologies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A large part of the literature on identification of linear time-
invariant (LTI) dynamic systems follows a statistical approach
(Ljung, 1999a; Söderström & Stoica, 1989), where probabilistic
assumptions are made, at least on the noise corrupting the mea-
surements. The techniques available in this context may be clas-
sified into two main categories: parametric and nonparametric.
Parametric techniques are mainly based on the prediction error
method (PEM) or on the maximum likelihood approach, if Gaus-
sian noise is assumed. The identified models belong to finite-
dimensional spaces of given order, like FIR, ARX, ARMAX, OE,
Laguerre, Kautz or orthonormal basis function models. In order
to limit the model complexity and to avoid possible overfitting,
a tradeoff between bias and variance is usually considered, and
the model order selection is performed by optimizing some suit-
able cost function — such as the Akaike’s information criterion
AIC (Akaike, 1974), the Rissanen’s Minimum Description Length
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MDL, or the Bayesian information criterion BIC (Rissanen, 1978;
Schwarz, 1978) – and by applying some form of cross validation
(CV), like hold-out or leave-one-out. Possible limits of these para-
metricmethods have been pointed out in Chen, Ohlsson, and Ljung
(2012), Pillonetto and De Nicolao (2010) and Pillonetto, Chiuso,
and De Nicolao (2011), where it is shown that the sample prop-
erties of PEM approaches equipped with, e.g., AIC and CV, may be
rather unsatisfactory and quite far from those predicted by stan-
dard (i.e., without model selection) statistical theory.

Nonparametric techniques aim to obtain the overall system’s
impulse response as a suitable deconvolution of observed in-
put–output data. In particular, very promising approaches have
been recently developed, based on results coming from the ma-
chine learning field, see, e.g., Pillonetto, Dinuzzo, Chen, De Nicolao,
and Ljung (2014) and the references therein. Rather than postulat-
ing finite-dimensional hypothesis spaces, the estimation problem
is tackled in an infinite-dimensional space, and the intrinsical ill-
posedness of the problem is circumvented by using suitable regu-
larization methods. In particular, the system’s impulse response is
modeled as a zero-mean Gaussian process, and the prior informa-
tion is introduced by simply assigning a specific covariance, named
kernel in themachine learning literature. This procedure can be in-
terpreted as the counterpart of model order selection in the para-
metric PEM approach and, in some cases, it is shown to be more
robust.

In the present paper, a novel nonparametric method is pre-
sented, whereby an estimate of the system’s impulse response is
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obtained by minimizing a suitable cost function that directly takes
into account the resulting model complexity. The aim is indeed
to obtain a low-complexity model of the system, in the form of a
reduced-order FIR (in this sense, the approach is not so far from
parametric techniques). A key feature of the proposed approach,
representing a relevant improvement over the state of the art, is
that it allows for an effective model order selection, without us-
ing strong a-priori information on the true system. More specifi-
cally, we propose the use of an identification criterion which is a
weighted combination of (a) a standard prediction error term, (b)
an ℓ2 regularization term, and (c) an ℓ1 penalty term which pro-
motes sparse solutions; a full justification for such criterion is given
in Section 3.2. This type of criterion corresponds to the so-called
Elastic Net cost, which recently has becomepopular in themachine
learning community, see, e.g., De Mol, De Vito, and Rosasco (2009)
and Zou and Hastie (2005). Notice that, while it is well known that
the use of ℓ1 regularization leads to sparse solutions, sparsity alone
is not a very interesting feature in our identification context. In-
deed, reduced-order FIR models are obtained only if the sparsity
of the solution follows a specific pattern, whereby the zeros are all
concentrated in the tail of the impulse response. Obtaining such a
pattern is not obvious, nor a-priori granted by the ℓ1 regulariza-
tion. One of the key contributions of this paper is to prove that,
under standard assumptions, the impulse response estimated via
our Elastic-Net type of criterion has the property of being indeed
nonzero only on the initial part of the impulse response (which we
shall name the leading response), with arbitrarily high probability,
if the number of data N is sufficiently large.

The present paper is organized as follows. In Section 2 the
notation is set, and some preliminary results on a Chebyshev’s
type of convergence for random variables are stated. Section 3
describes the linear identification problem of interest, and con-
tains the derivations of the Elastic Net cost. The main results on
the recovery of the leading part of the impulse response are con-
tained in Section 4. Section 5 illustrates a practical procedure for
implementing the proposed identification scheme. Numerical ex-
periments, including a comparative discussion with other identifi-
cation methods, are given in Section 6. All proofs are contained in
the Appendix.

2. Notation and preliminaries

2.1. Notation

For a vector x ∈ RN , we denote by [x]i the ith entry of x, and we
define its support as

supp(x) .
= {i ∈ {1, . . . ,N} : [x]i ≠ 0}.

The notation ∥x∥p represents the standard ℓp norm of x, and ∥x∥0
denotes the cardinality of supp(x), that is the number of nonzero
entries of x.

For a matrix X ∈ RN,M (with M possibly equal to ∞), we
denote by [X]i,j the entry of X in row i and column j. For n ≤ M ,
we denote by X↑n ∈ RN,n the sub-matrix formed by the first n
columns of X , with X↓n ∈ RN,M−n the sub-matrix formed by the
columns of X of indices n + 1, . . . ,M , and with X♯n the n × n
principal sub-matrix of X . The identity matrix is denoted by I , or
by In, if we wish to specify its dimension. We denote by XĎ the
Moore–Penrose pseudo-inverse of X; if X has full column rank,
then XĎ

= (X⊤X)−1X⊤.
If x is a random variable, then E{x} denotes the expected value

of x, and var{x} denotes its variance: var{x} = E{(x − E{x})2}. P
denotes a probability measure on x. The symbol ❀ implies almost
sure convergence, and it is formally defined in Section 2.2.1.

2.2. Chebyshev’s inequality for certain empirical means

Let xi, i = 1, . . . , be a sequence of (not necessarily independent)
random variables such that E{xi} = µ < ∞ for all i, var{xi} =

σ 2
i ≤ σ 2 < ∞ for all i, and E{(xi − µ)(xj − µ)} = 0 for all i ≠ j.

For given N ≥ 1, define the empirical mean

x̂N
.
=

1
N

N
i=1

xi.

Obviously, from linearity of the expectation, it holds that E{x̂N} =

µ. Further, we have that

σ 2 .
= var{x̂N} = E


(x̂N − µ)2


=

1
N2

E




N
i=1

(xi − µ)

2


=
1
N2


N
i=1

E

(xi − µ)2


+

N
i=1

N
j=1, j≠i

E

(xi − µ)(xj − µ)



=

N
i=1

σ 2
i


N2

≤ σ 2N,

where the last passages follow from the fact that the xis are
uncorrelated, and have first moment µ and variance σ 2

i ≤ σ 2.
Chebyshev’s inequality applied to the random variable x̂N thus
states that, for any η > 0,

P{|x̂N − µ| ≥ ησ } ≤ 1/η2. (1)

Since ησ ≤ ησ/
√
N , we have that P{|x̂N − µ| ≥ ησ/

√
N} ≤

P{|x̂N − µ| ≥ ησ }, whence, from (1), we obtain that P{|x̂N − µ| ≥

ησ/
√
N} ≤ 1/η2. Equivalently, we can state that, for any ϵ > 0, it

holds that

P{|x̂N − µ| ≥ ϵ} ≤ σ 2 Nϵ2 .
We thus conclude that, for any given accuracy ϵ > 0 and
probability β ∈ (0, 1), it holds that

P{|x̂N − µ| ≥ ϵ} ≤ β, ∀N ≥

σ 2 βϵ2 .

Notice that (1) implies that P{|x̂N − µ| > ησ } ≤ 1/η2; hence, by
considering the complementary event, it also holds that P{|x̂N −

µ| ≤ ησ } ≥ 1 − 1/η2, from which it follows that

P{|x̂N − µ| ≤ ϵ} ≥ 1 − σ 2 Nϵ2 .
2.2.1. Meaning of the convergence symbol ❀

For a random variable zN that depends on N and for a given real
value z̄, the notation zN ❀ z̄ means that for any given ϵ > 0 and
β ∈ (0, 1) there exists a finite integer Nϵ,β such that

P{|zN − z̄| ≥ ϵ} ≤ β, ∀N ≥ Nϵ,β . (2)

Notice that zN ❀ z̄ implies that zN converges to z̄ almost surely (that
is, with probability one), as N tends to infinity. However, we are
specifically interested in the property in (2), that holds for possibly
large, but finite, N .

2.3. Lipschitz functions of random variables

If zN is the empirical mean of N uncorrelated variables with
common mean µ and variance bounded by σ 2 then, from the
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