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a b s t r a c t

High-gain observers proved to be a useful tool in the design of output feedback control of nonlinear
systems. However, the observer faces a numerical challengewhen its dimension is high. For an observer of
dimension ρ and a high-gain parameter k, the observer gain is of the order of kρ and the observer variables
could be of the order of kρ−1 during the transient period. This paper presents a new high-gain observer
that is based on cascading lower-dimensional observers with saturation functions in between them. The
observer gain in the new observer is of the order of k and its variables are limited to be of the order of k
during the transient period. It is shown that the cascade observer has properties similar to the standard
one. In particular, a nonlinear separation principle is proved.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For over quarter of a century, high-gain observers have been
used extensively in the design of output feedback control of
nonlinear systems; see Khalil and Praly (2014) and the references
therein. They provided the first (non-local) nonlinear separation
principle for nonlinear systems (Atassi & Khalil, 1999; Teel & Praly,
1994). Not only does the observer recover stability achieved under
state feedback, it also recovers its performance in the sense that the
trajectories of the system under output feedback approach those
under state feedback as the observer gain increases. The separation
principle holds not only because the observer gain is made high,
but also by designing the feedback control as a globally bounded
function of the observer estimates to overcome the peaking
phenomenon of the observer (Atassi & Khalil, 1999). However,
the standard high-gain observer faces a numerical challenge if its
dimension, ρ, is high. The design of the observer is parameterized
by a small parameter ε and we refer to k = 1/ε as the high-gain
parameter. The observer gains are proportional to powers of k, with
kρ as the highest power. Moreover, during the transient period the
internal states of the observer could peak to large values, which
are proportional to powers of k, with kρ−1 as the highest power.
These features pose a challenge in the numerical implementation
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of the observer when ρ is high because in digital implementation
both parameters and signals have to be represented within the
finite wordlength of the digital system. It is worthwhile to note
that while it is typical to saturate the state estimates or the control
signal before applying the control to the plant, such saturation
takes place at the output side of the observer so it does not prevent
peaking in the internal variables of the observer.

Peaking of the observer’s internal variables is eliminated in
Maggiore and Passino (2003) by using estimate projection. This
technique was developed to deal with a class of nonlinear systems
that are not uniformly completely observable.While the technique
is elegant, most results that dealt with uniformly observable
systems continued to use saturation as a tool to overcome the effect
of peaking, as it can be seen from the references of the survey
paper (Khalil & Praly, 2014). Moreover, the observer of Maggiore
and Passino (2003) still suffers from the drawback that its gain is
proportional to kρ . On the other hand, the recent paper (Astolfi
& Marconi, 2015) has proposed a new high-gain observer where
the observer gain is limited to be of the order of k2. However,
the internal states of that observer could still peak to O(kρ−1)
values. The dimension of this observer is 2(ρ − 1) compared with
dimension ρ for the standard observer. The observer of Astolfi
and Marconi (2015) can be viewed as a cascade connection of
ρ − 1 second-order high-gain observers with feedback injection
from one stage to the previous one. This idea motivated the
cascade observer presented here, which eliminates the feedback
injection, replaces second-order observers by first-order ones, and
inserts saturation functions between the cascaded observers to
limit peaking. The more recent papers (Astolfi, Marconi, & Teel,
2016; Teel, 2016) limited peaking in the low-power observer
of Astolfi and Marconi (2015) by using nested saturations. The
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cascade observer of this paper is different from the observers in
Astolfi et al. (2016) and Teel (2016). Its dimension is ρ, compared
with 2(ρ − 1), and its design is simpler.

The paper is organized as follows. Section 2 reviews some basic
knowledge about the standard observer. Section 3 presents the
cascade observer and proves that the estimation errors decay to
O(ε) values within a time period [0, T (ε)], where limε→0 T (ε) =

0. Section 4 proves a nonlinear separation theorem when the
observer is used in feedback control. The results of Sections 3 and
4 are illustrated by simulation. Finally, some concluding remarks
are given in Section 5.

2. Preliminaries

A high-gain observer for the system

ẇ = f0(w, x, u) (1)
ẋi = xi+1, for 1 ≤ i ≤ ρ − 1 (2)
ẋρ = φ(w, x, u) (3)
y = x1 (4)

is given by

˙̂xi = x̂i+1 +
αi

εi
(y − x̂1), for 1 ≤ i ≤ ρ − 1 (5)

˙̂xρ = φ0(x̂, u)+
αρ

ερ
(y − x̂1) (6)

where φ0 is a nominal model of φ, ε is a sufficiently small positive
constant, and α1 to αρ are chosen such that the roots of

sρ + α1sρ−1
+ · · · + αρ−1s + αρ = 0 (7)

have negative real parts. We assume that f0, φ, and φ0 are locally
Lipschitz in their arguments and

|φ(w, x, u)− φ0(z, u)| ≤ L∥x − z∥ + M (8)

for all z ∈ Rρ and all boundedw, x, and u. Because

φ(w, x, u)− φ0(z, u) = φ(w, x, u)− φ0(x, u)
+φ0(x, u)− φ0(z, u)

and φ0(x, u) can be chosen to be globally Lipschitz in x by
saturating its x-argument outside a compact set, (8) requires the
modeling errorφ(w, x, u)−φ0(x, u) to be bounded.We can choose
φ0 = 0, which would be a natural choice if no information is
available onφ. In this case, (8) holdswith L = 0. On the other hand,
if φ is known and either it is not function of w or w is measured,
we can take φ0 = φ with the x-argument of φ saturated outside
a compact set of interest. In this case, (8) holds with M = 0. The
estimation error x̃i = xi − x̂i satisfies the inequality.1

|x̃i| ≤ max


b
εi−1

||x̃(0)|e−at/ε, ερ+1−icM


(9)

for 0 < ε ≤ ε∗ for some positive constants a, b, c , and ε∗. The two
terms on the right-hand side of (9) show bounds on the estimation
error due to two sources. The term (b/εi−1) ∥x̃(0)∥e−at/ε is due
to the initial estimation error x̃(0) and exhibits the peaking
phenomenon. It illustrates the fact that the estimation error decays
rapidly to small values. In particular, given any positive constant K ,
it can be seen that

b
ερ−1

e−at/ε
≤ Kε, ∀ t ≥ T (ε) def

=
ε

a
ln


b

Kερ


. (10)

1 See for example (Khalil, 2015, Section 11.4).

Using l’Hôpital’s rule, it can be seen that limε→0 T (ε) = 0. The
second term ερ+1−icM is due to the error in modeling the function
φ. This error will not exist if the observer is implemented with
φ = φ0.

In the special case where the task is to estimate the first deriva-
tive of a signal using a linear observer, the system (1)–(4) special-
izes to

ẋ1 = x2, ẋ2 = φ(x1, x2, u), y = x1 (11)

and the second-order linear observer is given by

˙̂x1 = x̂2 + (α1/ε)(y − x̂1), ˙̂x2 = (α2/ε
2)(y − x̂1) (12)

where α1, α2, and ε are positive constants. The observer’s transfer
function from y to x̂2 is given by

α2s
(εs)2 + α1(εs)+ α2

. (13)

The observer gain in (12) is of the order of 1/ε2. By scaling the ob-
server variables as z1 = x̂1 and z2 = εx̂2, the observer is imple-
mented by the equations

ż1 = (1/ε)[z2 + α1(y − z1)], ż2 = (α2/ε)(y − z1) (14)

x̂1 = z1, x̂2 = z2/ε (15)

where now the highest gain is of the order of 1/ε.
The first derivative can also be estimated using a reduced-order

linear observer of the form

ż = −(β/ε)(z + y), x̂2 = (β/ε)(z + y) (16)

where β and ε are positive constants. The observer’s transfer
function from y to x̂2 is given by

βs
εs + β

. (17)

In both observers, the estimation error satisfies the inequality

|x̃2| ≤ max

b
ε
||x̃(0)|e−at/ε, εcM


for some positive constants a, b, c. However, comparison of the
transfer functions (13) and (17) shows that the second-order
observer has low-pass filtering characteristics that filter out high-
frequency noise.

3. Cascade observer

In this section, we present a modified high-gain observer for
the system (1)–(4) that overcomes the numerical challenges in
implementing the standard high-gain observer when ρ is high.We
assume that f0 and φ are locally Lipschitz in their arguments and
w(t), x(t), and u(t) are bounded for all t ≥ 0. What is special
about the system (1)–(4) is that the states x2 to xρ are derivatives
of x1. The derivative of a signal can be estimated by a first-order
or second-order linear observer as we saw in the previous section.
By cascading such low-order observers we can estimate higher
derivatives of the signal. We choose to estimate x2 using a second-
order observer because of its low-pass filtering characteristics, but
use first-order observers to estimate x3 to xρ so that the dimension
of the cascade connection is ρ, as in the standard observer. The
cascade connection is given by

ż1 = (1/ε)[z2 + β1(y − z1)] (18)
ż2 = (β2/ε)(y − z1) (19)

x̂1 = z1, x̂2 = z2/ε (20)

żi = −(βi/ε)(zi + x̂i−1), for 3 ≤ i ≤ ρ (21)

x̂i = (βi/ε)(zi + x̂i−1), for 3 ≤ i ≤ ρ (22)
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