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a b s t r a c t

In this paper we study linear systemswith positivity type of constraints. First, we consider the case where
the input to a system is restricted to be in the positive cone of l∞, denoted by l+

∞
, and seek to characterize

the system’s induced norm from l+
∞

to l∞. We obtain an exact characterization of this norm which is
particularly easy to calculate in the case of LTI systems. Furthermore, we consider and solve the model
matching problem, and show that time-varying linear or nonlinear control/filtering does not improve the
performance with respect to this norm for LTI systems. In the second part of the paper, we consider the
case when the output is forced to be in the positive l∞ cone when the input is in this cone. We show
if internal positivity is sought, a dynamic optimal controller offers no advantage over a static one. Also,
if the measurement matrix satisfies certain conditions, synthesizing an optimal static output feedback
controller reduces to a linear program.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There are many dynamical systems in which some variables
are restricted to be non-negative (or non-positive); examples
can be found in biology, economics, and many other areas
(Berman & Plemmons, 1979; Ledzewicz, Naghnaeian, & Schättler,
2011, 2012). Motivated by such problems, the theory of positive
systems has been the focus of many researchers. Notions such
as stability, stabilizability, positive realization, and (distributed)
control synthesis of such systems have been the subject of
research, see e.g. Farina and Rinaldi (2011), Haddad, Chellaboina,
and Hui (2010), Kaczorek (2002), and Kaszkurewicz and Bhaya
(2012).

For linear systems, the notion of internal positivity refers to
the case when the states of the system remain nonnegative if the
inputs and the initial conditions are nonnegative. Many aspects
of positive linear systems have been investigated extensively, see
for example Fornasini and Valcher (2010). The controllability of
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linear positive systems is studied in Valcher (1996). The problem
of positive realization is considered in Farina (1996) and Van
Den Hof (1997). Authors of Shafai, Chen, and Kothandaraman
(1997) presented explicit formulas for the stability radii of such
systems; and, Shafai, Ghadami, and Oghbaee (2013) address
the stabilization problem while maximizing the stability radius.
Furthermore, the input–output properties and in particular the
gains of such systems have been given major attention in
Briat (2013), Ebihara, Peaucelle, and Arzelier (2012), Rantzer
(2011), and references therein. In Briat (2013), copositive linear
Lyapunov functions and linear supply rates are used, in the
context of dissipativity theory, to investigate robust stability and
performance. Further, the problem of synthesizing an optimal
l∞-induced static state-feedback controller with given sparsity or
boundedness constraints is considered and solved. Synthesizing
an optimal l1-induced static state-feedback controller is studied
in Chen, Lam, Li, and Shu (2013) and Ebihara et al. (2012). In the
latter, the problem is reduced to a bilinear programand an iterative
algorithm is utilized to solve it. The output feedback, however,
is a more challenging problem. This problem, in general, can be
cast as a bilinear program. In Ait-Rami (2011), a linear program is
provided to find a rank one static output-feedback gain such that
the closed loop system is stable and internally positive. For l2 type
of performance, one can refer to Rantzer (2011), and Tanaka and
Langbort (2010, 2011).

In this paper,we are interested in characterizing and optimizing
the l∞ gain of linear systems that contain positivity type of
constraints. Two cases are considered: when the input to the
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system is positive andwhen the system itself is positive. In the first
case, when the input is restricted to be in the positive cone of l∞,
denoted by l+

∞
, we seek to characterize the induced norm from l+

∞

to l∞. That is, for a given (not necessarily positive) linear system G,
we are interested to find supt ∥(Gu) (t)∥∞, where 0 ≤ u (k) ≤ 1
(the inequalities are taken component wise) for all nonnegative
integers k. We obtain an exact characterization of this norm (the
induced norm from l+

∞
to l∞) in terms of the standard l∞ induced

norms of appropriately defined subsystems which is particularly
easy to calculate in the case of Linear Time Invariant (LTI) systems.
We emphasize that no positivity assumption is made on the
system itself. We further consider the more general asymmetric
input signals and characterize the input–output gain of such
systems.More precisely, for two real numbers a and b, we compute
supt ∥(Gu) (t)∥∞, where a ≤ u (k) ≤ b for all nonnegative integers
k. As an application of the above developments, we consider a
filtering problem inwhich the signal to be estimated, s, is known to
live in a positive cone, i.e. s ∈ l+

∞
. In general, just designing a filter

to minimize the standard l∞ induced norm of the operator from
signal to the estimation error is conservative. Instead, we can use
the a priori knowledge of positiveness of the signal by considering
the same problem with l+

∞
to l∞ induced norm.

Based on this development, we consider the model matching
problem to show that time-varying linear or nonlinear control
or filtering does not improve the performance with respect to
this norm for LTI systems. Also, synthesizing an LTI controller
to optimize the l+

∞
to l∞ induced norm reduces to linear

programming. We further generalize the results to the case of
mixed input signals when there are inputs both in l+

∞
and l∞. As an

example, we consider the aforementioned filtering problem and
solve it when the signal is positive and bounded and there also
exists noise which is only bounded but not necessarily positive.

In the second part of the paper, we address the cases where
the positivity constraints are imposed on the systems. From the
input–output perspective, an externally positive system is one
whose output is in the positive l∞ cone when the input is in
this cone, starting from zero initial condition. As we point out, if
such a constraint is imposed on the closed loop map, finding an
optimal controller is a linear programming problem and hence
tractable (Elia & Dahleh, 1998). Also, if the model matching
problem for LTI systems is considered, time varying linear or
nonlinear compensation cannot outperform LTI even if external
positivity is enforced. Furthermore, if internal positivity is sought,
we show that a dynamic controller offers no advantage over a static
one as far as l1, l∞, or H∞ performance is concerned. Therefore,
the abovementioned results can be readily used to obtain an
optimal (static) state feedback controller or output feedback for
special cases. We note that, designing an optimal output feedback
controller (which is static) is a harder problem and in general
leads to a bilinear program. In certain cases, however, when the
measurement matrix satisfies certain conditions, such problem is
shown to reduce to a linear program.

2. Preliminaries

Let N, Z+, R, R+, Rn, and Rn×m denote the sets of positive inte-
gers, non-negative integers, real numbers, positive real numbers,
n-dimensional real vectors, and n × m dimensional real matrices,
respectively. For any x = (x1, x2, . . . , xn)T ∈ Rn, its l1 and l∞
norms are defined as ∥x∥1 =

n
i=1 |xi| and ∥x∥∞ = maxi |xi|.

For any M =

mij


∈ Rn×m, ∥M∥1 = maxi
m

j=1

mij
 , ∥M∥∞ =

maxj
n

i=1

mij
, and its null space is denoted byNull (M). For a full-

row rank matrix M ∈ Rn×m, with m ≥ n, let N (M) ∈ Rm×(m−n)

be a matrix whose columns span the null space of M . Also, asso-
ciated with M , we define two matrices M+

=

m+

ij


∈ Rn×m and

M−
=

m−

ij


∈ Rn×m as

m+

ij = 0 ∨ mij, m−

ij = 0 ∨ −mij,

where∨ stands for themax operator. That is, for two real numbers
a and b, a ∨ b := max {a, b}. We refer to M+ and M− as the
positive decomposition ofM and it can be easily verified thatM =

M+
− M−. Given a sequence y = {y (k)}∞k=1 where y (k) ∈ Rn, for

k ∈ Z+, one can define its positive decomposition into two non-
negative sequences y+ and y− in an analogous way. Furthermore,
its l1 and l∞ norms are given by ∥y∥1 =


∞

i=1 ∥y (k)∥1 and
∥y∥∞ = supk∈N ∥y (k)∥∞, whenever they are finite. The space of
such sequences whose l1 or l∞ norm is finite is denoted by ln1 and
ln
∞
, respectively.
Note that ln

∞
is the space of bounded sequences. In this paper,

we are also interested in a certain subset of ln
∞

which is denoted by
ln+
∞

. This set is characterized as

ln+
∞

=

{y (k)}∞k=1 ∈ ln

∞
: yi (k) ≥ 0, k ∈ Z+, i = 1, . . . , n


,

where yi (k) is the ith entry of vector y (k) ∈ Rn. In other
words, ln+

∞
is the set of bounded non-negative sequences. By

B

ln+
∞

, ε


(B

ln
∞

, ε

), for ε > 0, we mean the ball of radius ε in

ln+
∞

(ln
∞

).
Let Ln×m

TV be the space of all linear, causal, and bounded op-
erators, T : lm

∞
→ ln

∞
. That is, for any x, y ∈ lm

∞
, T (x + y) =

Tx + Ty, PkTPku = TPku, for ∀k ∈ Z+, and

∥T∥ := sup
u≠0

∥Tu∥∞

∥u∥∞

< +∞, (1)

where Pk is the truncation operator defined by

Pkx = (x0, x1, . . . , xk−1, 0, 0, . . .) .

Also, denote by Ln×m
TI the subspace of all T ∈ Ln×m

TV such that
ΛT = TΛ, where Λ is the delay operator

Λx = Λ (x0, x1, . . .) = (0, x0, x1, . . .) , for ∀x ∈ lm
∞

.

It is well-known that any T ∈ Ln×m
TV can be represented by a lower

triangular infinite dimensional matrix

T = [T (i, j)]i≥j =


T (0, 0) 0 0 · · ·

T (1, 0) T (1, 1) 0 · · ·

T (2, 0) T (2, 1) T (2, 2)
...

. . .

 , (2)

where T (i, j) ∈ Rn×m for all i, j ∈ Z+, i ≥ j. Moreover, (1) defines
a norm on Ln×m

TV and

∥T∥ = sup
i∈Z+

T (i, 0) T (i, 1) · · · T (i, i)


1 . (3)

Also, one can think of the positive decomposition of T into T+
=

T+ (i, j)

i≥j ∈ Ln×m

TV and T−
=

T− (i, j)


i≥j ∈ Ln×m

TV .

In Shamma and Dahleh (1991), the authors introduced the
normed space Lm×n

0 whose elements, G ∈ Lm×n
0 , can be repre-

sented by upper triangular infinite dimensional matrices

G =


G (0, 0) G (0, 1) G (0, 2) · · ·

0 G (1, 1) G (1, 2) · · ·

0 0 G (2, 2)
...

. . .

 ,

where G (i, j) ∈ Rm×n for all i, j∈ Z+ and j ≥ i. Moreover, Lm×n
0 is

equipped with a norm, ∥.∥L0 ,

∥G∥L0 =


i

∥C [G]i∥∞ ,
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