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a b s t r a c t

We consider a nonlinear state–spacemodel with the state transition and observation functions expressed
as basis function expansions. The coefficients in the basis function expansions are learned from data.
Using a connection to Gaussian processes we also develop priors on the coefficients, for tuning the
model flexibility and to prevent overfitting to data, akin to a Gaussian process state–space model. The
priors can alternatively be seen as a regularization, and helps the model in generalizing the data without
sacrificing the richness offered by the basis function expansion. To learn the coefficients and other
unknown parameters efficiently, we tailor an algorithm using state-of-the-art sequential Monte Carlo
methods, which comes with theoretical guarantees on the learning. Our approach indicates promising
results when evaluated on a classical benchmark as well as real data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear system identification (Ljung, 1999, 2010; Sjöberg
et al., 1995) aims to learn nonlinear mathematical models from
data generated by a dynamical system. We will tackle the
problem of learning nonlinear state–space models with only weak
assumptions on the nonlinear functions, and make use of the
Bayesian framework (Peterka, 1981) to encode prior knowledge
and assumptions to guide the otherwise too flexible model.

Consider the (time invariant) state–space model

xt+1 = f (xt , ut) + vt , vt ∼ N (0,Q ), (1a)
yt = g(xt , ut) + et , et ∼ N (0, R). (1b)

The variables are denoted as the state1 xt ∈ Rnx , which is not
observed explicitly, the input ut ∈ Rnu , and the output yt ∈ Rny .
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1 vt and et are i.i.d. with respect to t , and xt is thus Markov.

We will learn the state transition function f : Rnx × Rnu → Rnx

and the observation function g : Rnx ×Rnu → Rny as well as Q and
R from a set of training data of input–output signals {u1:T , y1:T }.

Consider a situation when a finite-dimensional linear, or other
sparsely parameterizedmodel, is too rigid to describe the behavior
of interest, but only a limited data record is available so that any too
flexible model would overfit (and be of no help in generalizing to
events not exactly seen in the training data). In such a situation, a
systematic way to encode prior assumptions and thereby tuning the
flexibility of the model can be useful. For this purpose, we will take
inspiration from Gaussian processes (GPs, Rasmussen & Williams,
2006) as a way to encode prior assumptions on f (·) and g(·). As
illustrated by Fig. 1, the GP is a distribution over functions which
gives a probabilistic model for interpolating and extrapolating
from observed data. GPs have successfully been used in system
identification for, e.g., response estimation, nonlinear ARX models
and GP state–space models (Frigola-Alcade, 2015; Kocijan, 2016;
Pillonetto & De Nicolao, 2010).

To parameterize f (·), we expand it using basis functions

f (x) =

m
j=0

w(j)φ(j)(x), (2)

and similarly for g(·). The set of basis functions is denoted
by {φ(j)(·)}mj=0, whose coefficients {w(j)

}
m
j=0 will be learned from

data. By introducing certain priors p(w(j)) on the basis function
coefficients the connection to GPs will be made, based on a
Karhunen–Loève expansion (Solin & Särkkä, 2014). We will thus
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Fig. 1. The Gaussian process as a modeling tool for a one-dimensional function
f : R → R. The prior distribution (upper left plot) is represented by the shaded
blue color (the more intense color, the higher density), as well as 5 samples drawn
from it. By combining the prior and the data (upper right plot), the posterior (lower
plot) is obtained. The posteriormean basically interpolates between the data points,
and adheres to the prior in regions where the data is not providing any information.
This is clearly a desirable property when it comes to generalizing from the training
data—consider the thought experiment of using a 2nd order polynomial instead.
Further, the posterior also provides a quantification of the uncertainty present, high
in data-scarce regions and low where the data provides knowledge about f (·).

be able to understand our model in terms of the well-established
and intuitively appealing GP model, but still benefit from the
computational advantages of the linear-in-parameter structure
of (2). Intuitively, the idea of the priors p(w(j)) is to keep w(j)

‘small unless data convinces otherwise’, or equivalently, introduce
a regularization of w(j).

To learn the model (1), i.e., determine the basis function
coefficients w(j), we tailor a learning algorithm using recent
sequential Monte Carlo/particle filter methods (Kantas, Doucet,
Singh, Maciejowski, & Chopin, 2015; Schön et al., 2015). The
learning algorithm infers the posterior distribution of the unknown
parameters from data, and come with theoretical guarantees. We
will pay extra attention to the problem of finding the maximum
mode of the posterior, or equivalent, regularized maximum
likelihood estimation.

Our contribution is the development of a flexible nonlinear
state–space model with a tailored learning algorithm, which
together constitutes a new nonlinear system identification tool.
The model can either be understood as a GP state–space model
(generalized allowing for discontinuities, Section 3.2.3), or as a
nonlinear state–space model with a regularized basis function
expansion.

2. Related work

Important work using the GP in system identification includes
impulse response estimation (Chen, Ohlsson, & Ljung, 2012;
Pillonetto, Chiuso, & De Nicolao, 2011; Pillonetto & De Nicolao,
2010), nonlinear ARX models (Bijl, Schön, van Wingerden, &
Verhaegen, 2016; Kocijan, Girard, Banko, & Murray-Smith, 2005),
Bayesian learning of ODEs (Calderhead, Girolami, & Lawrence,
2008; Macdonald, Higham, & Husmeier, 2015; Wang & Barber,
2014) and the latent force model (Alvarez, Luengo, & Lawrence,
2013). In the GP state–space model (Frigola-Alcade, 2015) the

transition function f (·) in a state–space model is learned with
a GP prior, particularly relevant to this paper. A conceptually
interesting contribution to the GP state–space model was made
by Frigola, Lindsten, Schön, and Rasmussen (2013), using a Monte
Carlo approach (similar to this paper) for learning. The practical
use of Frigola et al. (2013) is however very limited, due to its
extreme computational burden. This calls for approximations,
and a promising approach is presented by Frigola, Chen, and
Rasmussen (2014) (and somewhat generalized by Mattos et al.,
2016), using inducing points and a variational inference scheme.
Another competitive approach is Svensson, Solin, Särkkä, and
Schön (2016), where we applied the GP approximation proposed
by Solin and Särkkä (2014) and used a Monte Carlo approach
for learning (Frigola-Alcade, 2015 covers the variational learning
using the same GP approximation). In this paper, we extend this
work by considering basis function expansions in general (not
necessarily with a GP interpretation), introduce an approach to
model discontinuities in f (·), as well as including both a Bayesian
and a maximum likelihood estimation approach to learning.

To the best of our knowledge, the first extensive paper on
the use of a basis function expansion inside a state–space model
was written by Ghahramani and Roweis (1998), who also wrote
a longer version (Roweis & Ghahramani, unpublished). The recent
work by Tobar, Djurić, and Mandic (2015) resembles that of
Ghahramani and Roweis (1998) on the modeling side, as they
both use basis functions with locally concentrated mass spread
in the state space. On the learning side, Ghahramani and Roweis
(1998) use an expectation maximization (EM, Dempster, Laird, &
Rubin, 1977) procedure with extended Kalman filtering, whilst
(Tobar et al., 2015) use particle Metropolis–Hastings (Andrieu,
Doucet, & Holenstein, 2010). There are basically three major
differences between (Tobar et al., 2015) and our work. We will
(i) use another (related) learning method, particle Gibbs, allowing
us to take advantage of the linear-in-parameter structure of the
model to increase the efficiency. Further, we will (ii) mainly
focus on a different set of basis functions (although our learning
procedure will be applicable also to the model used by Tobar et al.,
2015), and – perhaps most important – (iii) we will pursue a
systematic encoding of prior assumptions further than (Tobar et al.,
2015), who instead assume g(·) to be known and use ‘standard
sparsification criteria from kernel adaptive filtering’ as a heuristic
approach to regularization.

There are also connections to Paduart et al. (2010), who use
a polynomial basis inside a state–space model. In contrast to
our work, however, Paduart et al. (2010) prevent the model
from overfitting to the training data not by regularization, but
by manually choosing a low enough polynomial order and
terminating the learning procedure prematurely (early stopping).
Paduart et al. are, in contrast to us, focused on the frequency
properties of the model and rely on optimization tools. An
interesting contribution by Paduart et al. is to first use classical
methods to find a linear model, which is then used to initialize
the linear term in the polynomial expansion. We suggest to also
use this idea, either to initialize the learning algorithm, or use the
nonlinear model only to describe deviations from an initial linear
state–space model.

Furthermore, there are also connections to our previous
work (Svensson, Schön, Solin, & Särkkä, 2015), a short paper
only outlining the idea of learning a regularized basis function
expansion inside a state–space model. Compared to Svensson
et al. (2015), this work contains several extensions and new
results. Another recent work using a regularized basis function
expansion for nonlinear system identification is that of Delgado,
Agüero, Goodwin, and Mendes (2015), however not in the
state–space model framework. Delgado et al. (2015) use rank
constrained optimization, resembling an L0-regularization. To
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