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a b s t r a c t

Distributed averaging-based integral (DAI) controllers are becoming increasingly popular in power
system applications. The literature has thus far primarily focused on disturbance rejection, steady-state
optimality and adaption to complex physical system models without considering uncertainties on the
cyber and communication layer nor their effect on robustness and performance. In this paper, we derive
sufficient delay-dependent conditions for robust stability of a secondary-frequency-DAI-controlled power
systemwith respect to heterogeneous communication delays, link failures and packet losses. Our analysis
takes into account both constant as well as fast-varying delays, and it is based on a common strictly
decreasing Lyapunov–Krasovskii functional. The conditions illustrate an inherent trade-off between
robustness and performance of DAI controllers. The effectiveness and tightness of our stability certificates
are illustrated via a numerical example based on Kundur’s four-machine-two-area test system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Power systems worldwide are currently experiencing drastic
changes and challenges. One of themain driving factors for this de-
velopment is the increasing penetration of distributed and volatile
renewable generation interfaced to the network with power elec-
tronics accompanied by a reduction in synchronous generation.
This results in power systemsbeing operated undermore andmore
stressed conditions (Winter, Elkington, Bareux, &Kostevc, 2015). In
order to successfully cope with these changes, the control and op-
eration paradigms of today’s power systems have to be adjusted.
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Thereby, the increasing complexity in terms of network dynamics
and number of active network elements renders centralized and
inflexible approaches inappropriate creating a clear need for ro-
bust and distributed solutionswith plug-and-play capabilities (Str-
bac et al., 2015). The latter approaches require a combination of
advanced control techniques with adequate communication tech-
nologies.

Multi-agent systems (MAS) represent a promising framework
to address these challenges (McArthur et al., 2007). A popular
distributed control strategy for MAS are distributed averaging-
based integral (DAI) algorithms, also known as consensus filters
(Freeman, Yang, & Lynch, 2006; Olfati-Saber, Fax, & Murray, 2007)
that rely on averaging of integral actions through a communication
network. The distributed character of this type of protocol has
the advantage that no central computation unit is needed and
the individual agents, i.e., generation units, only have to exchange
informationwith their neighbors (Bidram, Lewis, &Davoudi, 2014).

One of the most relevant control applications in power systems
is frequency control which is typically divided into three hierarchi-
cal layers: primary, secondary and tertiary control (Kundur, 1994).
In the present paper,we focus on secondary controlwhich is tasked
with the regulation of the frequency to a nominal value in an eco-
nomically efficient way and subject to maintaining the net area
power balance. The literature on secondary DAI frequency con-
trollers addressing these tasks is reviewed in the following.
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1.2. Literature review on DAI frequency control

DAI algorithms have been proposed previously to address the
objectives of secondary frequency control in bulk power sys-
tems (Andreasson, Sandberg, Dimarogonas, & Johansson, 2012;
Monshizadeh & De Persis, 2017; Schiffer & Dörfler, 2016; Trip,
Bürger, & De Persis, 2016) and also in microgrids (i.e., small-
footprint power systems on the low and medium voltage level)
(Anon, 2016; Bidram et al., 2014; Simpson-Porco, Dörfler, & Bullo,
2013). They have been extended to achieve asymptotically opti-
mal injections (Stegink, De Persis, & van der Schaft, 2016a; Zhao,
Mallada, & Dörfler, 2015), and have also been adapted to in-
creasingly complex physical system models (Persis, Monshizadeh,
Schiffer, & Dörfler, 2016; Stegink, De Persis, & van der Schaft,
2016b). The closed-loop DAI-controlled power system is a cy-
ber–physical system whose stability and performance crucially
relies on nearest-neighbor communication. Despite all recent ad-
vances, communication-based controllers (in power systems) are
subject to considerable uncertainties such asmessage delays, mes-
sage losses, and link failures (Strbac et al., 2015; Yang, Barria, &
Green, 2011) that can severely reduce the performance – or even
affect the stability – of the overall cyber–physical system. Such cy-
ber–physical phenomena and uncertainties have not been consid-
ered thus far in DAI-controlled power systems.

For microgrids, the effect of communication delays on sec-
ondary controllers has been considered in Liu, Wang, and Liu
(2015) for the case of a centralized PI controller, in Ahumada,
Crdenas, Sez, and Guerrero (2016) for a centralized PI controller
with a Smith predictor as well as a model predictive controller
and in Coelho et al. (2016) for a DAI-controlled microgrid with
fixed communication topology. In all three papers, a small-signal
(i.e., linearization-based) analysis of a model with constant delays
is performed.

In Lai, Zhou, Lu, and Liu (2016) and Lai, Zhou, Lu, Yu, and Hu
(2016) distributed control schemes for microgrids are proposed,
and conditions for stability under time-varying delays as well as
a dynamic communication topology are derived. However, both
approaches are based on the pinning-based controllers requiring
a master–slave architecture. Compared to the DAI controller in
the present paper, this introduces an additional uncertainty as the
leader may fail (see also Remark 1 in Lai, Zhou, Lu, Yu, & Hu, 2016).
In addition, the analysis in Lai, Zhou, Lu, and Liu (2016) and Lai,
Zhou, Lu, Yu, and Hu (2016) is restricted to the distributed control
scheme on the cyber layer and neglects the physical dynamics.
Moreover, the control in Lai, Zhou, Lu, and Liu (2016) is limited
to power sharing strategies, and secondary frequency regulation
is not considered.

The delay robustness of alternative distributed secondary con-
trol strategies (based on primal–dual decomposition approaches)
has been investigated for constant delays and a linearized power
system model in Zhang, Kang, McCulloch, and Papachristodoulou
(2016) and Zhang and Papachristodoulou (2014).

1.3. Contributions

The present paper addresses both the cyber and the physical
aspects of DAI frequency control by deriving conditions for
robust stability of nonlinear DAI-controlled power systems under
communication uncertainties. With regard to delays, we consider
constant as well as fast-varying delays. The latter are a common
phenomenon in sampled data networked control systems, due
to digital control (Fridman, 2014a,b; Liu & Fridman, 2012) and
as the network access and transmission delays depend on the
actual network conditions, e.g., in terms of congestion and channel
quality (Hespanha, Naghshtabrizi, & Xu, 2007). In addition to
delays, in practical applications the topology of the communication

network can be time-varying due to message losses and link
failures (Lin & Jia, 2008; Olfati-Saber et al., 2007; Olfati-Saber &
Murray, 2004). This can bemodeled by a switching communication
network (Olfati-Saber et al., 2007; Olfati-Saber & Murray, 2004).
Thus, the explicit consideration of communication uncertainties
leads to a switched nonlinear power system model with (time-
varying) delays the stability of which is investigated in this paper.

More precisely, our main contributions are as follows. First,
we derive a strict Lyapunov function for a nominal DAI-controlled
power systemmodelwithout communication uncertainties,which
may also be of independent interest. Second, we extend this
strict Lyapunov function to a common Lyapunov–Krasovskii
functional (LKF) to provide sufficient delay-dependent conditions
for robust stability of a DAI-controlled power systemwith dynamic
communication topology as well as heterogeneous constant and
fast-varying delays. Our stability conditions canbe verifiedwithout
exact knowledge of the operating state and reflect a fundamental
trade-off between robustness and performance of DAI control.
Third and finally, we illustrate the effectiveness of the derived
approach on a numerical benchmark example, namely Kundur’s
four-machine-two-area test system (Kundur, 1994, Example 12.6).

The remainder of the paper is structured as follows. In Section 2
we recall some preliminaries on algebraic graph theory and
introduce the power systemmodel employed for the analysis. The
DAI control is motivated and introduced in Section 3, where we
also derive a suitable error system. A strict Lyapunov function
for the closed-loop DAI-controlled power system is derived in
Section 4. Based on this Lyapunov function, we then construct a
common LKF for DAI-controlled power systems with constant and
fast-varying delays in Section 5. A numerical example is provided
in Section 6. The paper is concluded with a brief summary and
outlook on future work in Section 7.
Notation. We define the sets R≥0 := {x ∈ R|x ≥ 0},R>0 :=

{x ∈ R|x > 0} and R<0 := {x ∈ R|x < 0}. For a set V, |V|

denotes its cardinality and [V]
k denotes the set of all subsets of

V that contain k elements. Let x = col(xi) ∈ Rn denote a vector
with entries xi for i ∈ {1, . . . , n}, 0n the zero vector, 1n the vector
with all entries equal to one, In the n × n identity matrix, 0n×n
the n × n matrix with all entries equal to zero and diag(ai) an
n × n diagonal matrix with diagonal entries ai ∈ R. Likewise, A =

blkdiag(Ai) denotes a block-diagonal matrix with block-diagonal
matrix entries Ai. For A ∈ Rn×n, A > 0 means that A is symmetric
positive definite. The elements below the diagonal of a symmetric
matrix are denoted by ∗. We denote by W [−h, 0], h ∈ R>0, the
Banach space of absolutely continuous functions φ : [−h, 0] →

Rn, h ∈ R>0, with φ̇ ∈ L2(−h, 0)n and with the norm ∥φ∥W =

maxθ∈[a,b] |φ(θ)| +

 0
−h φ̇

2dθ
0.5

. Also, ∇f denotes the gradient
of a function f : Rn

→ R.

2. Preliminaries

2.1. Algebraic graph theory

An undirected graph of order n is a tuple G = (N , E), where
N = {1, . . . , n} is the set of nodes and E ⊆ [N ]

2, E =

{e1, . . . , em}, is the set of undirected edges, i.e., the elements of E
are subsets of N that contain two elements. In the context of the
present work, each node in the graph represents a generation unit.
The adjacency matrix A ∈ R|N |×|N | has entries aik = aki = 1
if an edge between i and k exists and aik = 0 otherwise. The
degree of a node i is defined as di =

|N |

k=1 aik. The Laplacian
matrix of an undirected graph is given by L = D − A, where
D = diag(di) ∈ R|N |×|N |. An ordered sequence of nodes such that
any pair of consecutive nodes in the sequence is connected by an
edge is called a path. A graph G is called connected if for all pairs
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