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a b s t r a c t

In this work we study the problem of multi-robot coverage of a planar region when the sensory field
used to approximate the density of event appearance is not known in advance. We address the problem
by considering two different communication architectures: client–server and peer-to-peer. In the first
architecture the robots are allowed to communicate with a central server/base station. In the second the
robots communicate among neighboring peers by means of a gossip protocol in a distributed fashion.
For both the architectures, we resort to nonparametric Gaussian regression approach to estimate the
unknown sensory field of interest from a collection of noisy samples. We propose a probabilistic control
strategy based on the posterior of the estimation error variance, which lets the robots to estimate
the true sensory field with any arbitrary accuracy while simultaneously computing and exploiting the
corresponding centroidal Voronoi partitions. We also present a numerically efficient approximation
based on a spatial discretization to trade-off the accuracy of the estimated map against the required
computational complexity. This trade-off can be tuned based on explicit estimation error bounds which
depend on the spatial resolution and the Gaussian kernel parameters. Finally, we test the proposed
solutions via extensive numerical simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The growing sensing capabilities and the development of
autonomous robot vehicles able to coordinate themselves to
achieve desired tasks are expected to revolutionize our capability
to control the physical environment (Leonard et al., 2007). In
this context, the coverage of an area of interest is one important
and interesting task. In many applications the ability of a group
of robots to sense and automatically cover the surrounding
environment to maximize the likelihood of detecting an event
of interest is appealing. On the other hand, knowledge about
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the spatial distribution of the event of interest is needed. As
an example, consider a group of robots monitoring a forest to
detect possible wildfires. Since the probability of a wildfire is
likely to be proportional to the temperature, the robots should
more densely cover areas with higher temperature which, if not
known in advance, must be reconstructed from collected samples.
At the same time, to minimize the time to reach a wildfire, the
robots should station near the centroids of the partitioned area.
This highlights the issue of simultaneous estimation and coverage
associated with the problem of interest.

In this work we analyze the problem of covering the area of in-
terest while estimating the non-uniform measurable field of event
appearance from noisymeasurements collected by the robots. There
has been considerable effort in the analysis of estimation and cov-
erage separately. Historically, classical identification techniques
are based on parametric estimation paradigms, like ML and PEM
(Ljung, 1999). However, these techniques often require persistent
excitation to ensure convergence of the parameter (Choi, Oh, &
Horowitz, 2009) and may be unsatisfactory when tested on exper-
imental data (Pillonetto, Chiuso, & De Nicolao, 2011). To overcome
these issues techniques, grouped under the nonparametric learning
framework, have been recently developed. The main idea is to ex-
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ploit black box models to estimate a function from examples col-
lected on input locations drawn from a fixed probability sensory
function (Pillonetto et al., 2011; Poggio & Girosi, 1990). The draw-
back is that the computational complexity growsunbounded as the
cube of the number of collected samples. Thus, efficient approaches
(Xu, Choi, Dass, & Maiti, 2015) based on, e.g., suitable measure-
ments truncation (Xu, Choi, Dass, & Maiti, 2012; Xu, Choi, & Oh,
2011) or Gaussian Markov random fields (Xu, Choi, Dass, & Maiti,
2013), have been proposed.

Classical approaches to the coverage problem assume the
sensory function to be perfectly known in advance. In this spirit,
works (Cortés & Bullo, 2005; Cortes, Martinez, Karatas, & Bullo,
2004; Durham, Carli, Frasca, & Bullo, 2012) exploit the concept
of Centroidal Voronoi partitioning and present solutions based
on gradient descent strategies. In Leonard and Olshevsky (2011)
a policy for the coverage of a 1-D environment is presented. In
Davison, Schwemmer, and Leonard (2012) a limited number of
noise-free samples are considered yet no convergence results are
presented. The work (Davison, Leonard, Olshevsky, & Schwemmer,
2015) extends (Davison et al., 2012; Leonard &Olshevsky, 2011) by
proving convergence in probability to the optimal configuration.
A distributed solution in the presence of known time-varying
functions is given in Lee, Diaz-Mercado, and Egerstedt (2015). A
different line of research deals with adaptive/optimal sampling
strategies to enhance estimation accuracy (Xu & Choi, 2011). In
particular, in Xu et al. (2011) is proposed a distributed efficient
solution, where each robot independently estimates the function
of interest based on a truncated subset of its own measurements
and those gathered by its neighbors. In Xu et al. (2013) instead,
each robot is in charge of monitoring a fixed area of interest, thus
not requiring any exchange of measurements between robots.

Some results to the coupled problem, i.e. when both coverage
and estimation are considered, have appeared recently. In Choi,
Lee, and Oh (2008) the authors exploit Kalman filtering to
perform Gaussian estimation. The final objective is to perform
estimation and maximum seeking of a function of interest by
means of a coordinated group of robots. They propose a two stage
algorithm in which, first, based on information on the posterior
variance, the robots are spread throughout the space in order to
achieve a good estimate of the sensory function; once achieved a
predefined threshold, the robots are driven towards themaximum
of the estimated function. However, no convergence results during
the estimation phase are shown. In Choi and Horowitz (2010)
the authors propose a strategy to drive a formation of robots
towards the coverage of an area of interest characterized by an
unknown probability density function of event appearance. The
result builds on learning diffeomorphic functions with kernels.
However, it applies only to one dimensional environments and,
if needed, it does not provide any estimate of the function
of interest. In Schwager, Rus, and Slotine (2009) the authors
propose an algorithm for simultaneous distributed consensus-like
parametric estimation from noise-freemeasurements and optimal
coverage based on centroidal Voronoi partitioning. However, to
prove estimation convergence an infinite amount of noise-free
measurements are assumed to be collected in finite time.

In this work, of which a preliminary version can be found
in Carron et al. (2015), we analyze the problem of simultaneous
estimation and coverage. The main contribution is twofold: the
first is to consider a strategy that smoothly moves from estimation
to coverage at the benefit of better transient behavior as compared
to traditional approaches. The second contribution is to exploit
the better estimation performance of non-parametric Gaussian
regression as compared to parametric approaches while being
able to bound its computational complexity. More specifically, we
consider two different communication architectures to address the
problemboth in a centralized aswell as in a distributed framework,

namely client–server and peer-to-peer (p2p), respectively. In the
client–server architecture (even referred to as one-to-base station
communication (Pater, Frasca, Durham, Carli, & Bullo, 2016)) the
robots can communicate with a server/base station. In the p2p
architecture robots are allowed to communicate with neighboring
peers by means of a gossip protocol. The goal is to perform
nonparametric estimation of an unknown sensory distribution
function from noisy samples while driving the robots to optimally
cover an area of interest. This is achieved via a probabilistic control
strategy which allows the robots to seamless transition between
estimation and coverage. Differently from the standard approach
(Choi et al., 2008), our control never completely switches from the
estimation to the coverage phase but always trade-offs between
them in order to achieve the best solution in terms of estimation
and coverage. This (i) let us prove convergence in probability of the
estimated function to the true one. As so,we obtain a final coverage
configuration which is arbitrarily close to a partitioning obtained
with the exact prior knowledge of the sensory function. Moreover,
(ii) the strategy, compared to threshold-based approaches, e.g., in
the same spirit of the algorithm proposed in Choi et al. (2008),
can lead to smaller average coverage time. To alleviate the
computational burden needed to implement the nonparametric
estimation procedure, we also propose an alternative algorithm,
based on a spatial discretization, to trade-off between accuracy on
the estimated map and computational requirements.

The remainder of the paper is as follows. Section 2, recalls
the necessary preliminaries. Section 3 contains the problem at
hand. Sections 4–6 present the server-based algorithm, its efficient
version and the distributed solution with their convergence
analysis, respectively. Section 7 presents compelling simulations
to test the proposed solution against other possible strategies as
well as in the presence of practical limitations. Section 8 concludes
the paper. All the proofs can be found in Appendix.

2. Preliminaries

2.1. Voronoi partitions

Let X ⊂ R2 be compact and convex. Let µ : X → R>0 be a
distribution sensory function defined over X . Within the context
of this paper, a partition of X is a collection of N convex polygons
P = (P1, . . . , PN) with disjoint interiors whose union is X .
Given the list ofN distinct points inX , x = (x1, . . . , xN), we define
the Voronoi partition W (x) = (W1(x), . . . , WN(x)) generated by x
as

Wi(x) =

q ∈ X | ∥q − xi∥ ≤ ∥q − xj∥, ∀j ≠ i


(1)

∥ · ∥ being the Euclidean norm, which can be shown to be
convex (Du, Faber, & Gunzburger, 1999). Given a partition P =

(P1, . . . , PN), for each region Pi, i ∈ {1, . . . ,N}, we define its
centroidwith respect to the sensory function µ as

ci(Pi) =


Pi

µ(q)dq
−1 

Pi

qµ(q)dq.

We denote with c(P) = (c1(P1), . . . , cN(PN)) the vector of
regions centroids. A partition P = (P1, . . . , PN) is said to be a
Centroidal Voronoi partition of the pair (X , µ) if P = W (c(P)),
i.e., P coincides with the Voronoi partition generated by c(P).
Given a partition P = (P1, . . . , PN), a sensory function µ and
a set of pints x = (x1, . . . , xN), we introduce the cost function
H(P, x, µ) defined as

H(P, x, µ) =

N
i=1


Pi

∥q − xi∥2µ(q)dq. (2)
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