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a b s t r a c t

We present an adaptive dual model predictive controller (dmpc) that uses current and future parameter-
estimation errors to minimize expected output error by optimally combining probing for uncertainty
reduction with control of the nominal model. Our novel approach relies on orthonormal basis-function
models to derive expressions for the predicted distributions for the output and unknown parameters,
conditional on the future input sequence. Propagating the exact future statistics enables reformulating the
original stochastic problem into a deterministic equivalent that illustrates the dual nature of the optimal
control but is nonlinear and nonconvex. We further reformulate the nonlinear deterministic problem
to pose an equivalent quadratically-constrained quadratic-programming (qcqp) problem that state-of-
the-art algorithms can solve efficiently, providing the exact solution to the probabilistically constrained
finite-horizon dual control problem. The adaptive dmpc solves this qcqp at each sampling time on a
receding horizon; the adaptation is a result of updating the parameter estimates used by the dmpc to
decide the control input. The paper demonstrates the application of dmpc to a single-input single-output
(siso) system with unknown parameters. In the simulation example, the parameter estimates converge
quickly and the probing vanishes with increasing accuracy and precision of the estimates, improving the
future control performance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses the problem of optimal control and learn-
ing in the context of stochastic systems andmodelswith stochastic
parametric uncertainty and probabilistic constraints. Dual control,
as introduced by Feldbaum (1961), is the optimal control under
decision-relevant, reducible uncertainty. Dual control problems in-
clude the mechanisms for both control and learning in the formu-
lation, and the solution optimally incorporates both aspects in the
input to the process.

Using data to progressively reduce uncertainty is often framed
as a learning process, in the control community primarily studied
in the field of adaptive control. Most adaptive control algorithms
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are passively adaptive in the sense that learning takes place only
as a side-effect of the control action. These controllers learn from
normal operating data, which can contain very little information.
Informally, a control that with nonzero probability affects not
only the system state but also the uncertainty (specifically, error
covariances or higher-order central moments) has a dual effect
on the system; systems in which the control cannot affect this
uncertainty are called neutral (see Bar-Shalom & Tse, 1974 for
a rigorous definition). Note that dual effect and neutrality are
properties of the system rather than the control algorithm. For
systems in which the control has a dual effect, operating data can
be made more informative by actively probing the process (Bar-
Shalom, 1981), also known as excitation (Mareels et al., 1987),
experimentation (Gevers & Ljung, 1986), exploration (Sutton &
Barto, 1998), or active learning (Tse & Bar-Shalom, 1973). An
actively adaptive controller is designed to improve the learning
by accounting for the dual effect and increasing the amount of
information generated. While active learning may fail to improve
performance if the level of excitation is insufficient or excessive,
the dual control is the optimal control with respect to expected
system performance through endogenizing the dual effect in the
problem formulation.
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Adaptivemodel predictive control (mpc) has received relatively
little attention in the literature (Mayne, 2014). As with most
adaptive control approaches, adaptive mpc may suffer from
signals that are insufficiently exciting for the controller or
model parameters to converge to appropriate values, which
may lead to problems such as bursting (Anderson, 1985), pole-
zero cancellations or inadmissible models (Mareels & Polderman,
1996), and turn-off (Wieslander & Wittenmark, 1971). One way
of approaching this issue is to design a controller that actively
explores the system by ensuring a certain level of excitation,
either constantly or when needed. Larsson, Rojas, Bombois,
and Hjalmarsson (2015), Marafioti, Bitmead, and Hovd (2014),
and Shouche, Genceli, Vuthandam, and Nikolaou (1998) develop
algorithms that ensure a prescribed amount of information
or excitation is generated, with the potential disadvantage of
suboptimal performance resulting from excessive excitation of the
process.

Several proposed controllers generate excitationwithout a spe-
cific requirement. Rather, they include a function of information
or uncertainty in the mpc cost function and optimize this function
together with standard control objectives. Heirung, Foss, and Yd-
stie (2015a) propose and compare two such formulations that con-
verge to a standard adaptive certainty-equivalence (ce; Åström &
Wittenmark, 1995)mpc formulation as the uncertainty is reduced,
and show that the excitation can improve closed-loop perfor-
mance. Tanaskovic, Fagiano, Smith, and Morari (2014) suggest the
addition of an exploring property as a possible extension of their
adaptive mpc for finite-impulse-response (fir) systems. Their ap-
proach involves modifying the nominally optimal input sequence
by solving a second-stage optimization problem, the objective of
which is decreasing the set of possible models at the next time
step. Common to these approaches is that the excitation is a con-
sequence of a heuristic modification of the controller, based on the
assumption that the resulting excitation will improve overall per-
formance. While this type of algorithm may work well in practice
and improve performance over passive-learning approaches (see
Heirung et al., 2015a), the excitation is not an implicit consequence
of optimizing for performance, which is the case for dual control
in the sense of Feldbaum. The algorithm type does, however, il-
lustrate an important distinction: superimposing excitation on a
nominally optimal control signal does not generally result in opti-
mal performance, and the inputs are consequently not dual.

Feldbaum (1961) identified (stochastic) dynamic programming
as an appropriate solution method for dual control problems in
his pioneering papers on optimal integration of active learning
with multistage decision-making under uncertainty. Åström and
Helmersson (1986) solved a scalar dual control problem with one
unknown parameter, but the ‘‘curse of dimensionality’’ prevents
dynamic programming from being a viable solution approach
for most dual control problems. This has motivated the use of
modern approximate methods (Bayard & Schumitzky, 2010; Lee
& Lee, 2009) that directly approximate the dynamic programming
equations rather than the problem formulation.

In this article we derive an adaptive dual mpc (dmpc) for sys-
temsmodeled with orthonormal basis functions with probabilistic
parametric uncertainty and process noise.We formulate a stochas-
tic optimal-control problem forminimizing expected performance
cost, which involves the use of future information to evaluate the
conditional expected future tracking error. This stochastic prob-
lem is transformed into an equivalent deterministic form that
enables exact evaluation of both the objective function and the
probabilistic constraints. The reformulation relies on the future de-
cisions for propagation of the exact conditional distributions over
the prediction horizon, which enables determination of the learn-
ing outcome of the decision sequence. Consequently, the learning
is correctly rewarded in the control algorithm, avoiding heuris-
tic additions to the cost function (as opposed to earlier work

by Heirung et al., 2015a, e.g.). We transform the reformulated
problem into a quadratically-constrained quadratic-programming
(qcqp) problem that can be solved efficiently using state-of-the-art
solvers. The proposed dmpc ensures that the system is sufficiently
excited for accurate and precise parameter estimation but does not
generate a persistently exciting input. Some results in this article
are generalizations of ideas by Heirung, Ydstie, and Foss (2015b), a
portion of which is given there without proof. Primarily, this paper
considers a more general system type and includes probabilistic
output constraints.

The act of exciting, or probing, a system for learning is often
seen as conflicting with the control objective (see, e.g., Tse &
Bar-Shalom, 1973), and a trade-off between control and probing
is frequently discussed (Åström & Kumar, 2014, e.g.). However,
based on the derivations in this article we argue that this is not a
correct interpretation and show that excitation is an intrinsic part
of the optimal control. That excitation is an inextricable part of
the input in dual control means it cannot be derived or rewarded
heuristically. Furthermore, the excitation and the nominal output
error-minimization are not conflicting goals that can be traded
off against each other; rather, they are inseparable components
that together constitute the optimal control. Uncertainty reduction
cannot be sacrificed for increased control performance.

This article is organized as follows: Section 2 provides
the formulation of the stochastic control problem (P) and
briefly reviews some necessary statistical background. The main
contributions of the paper are in Section 3, where we state and
prove the results necessary to reformulate the stochastic optimal-
control problem as the equivalent deterministic problem (P′) and
subsequently transform this formulation into the qcqp problem
(P′′). Section 4 contains the dual control algorithm, followed by
a simulation example in Section 5. Section 6 concludes the paper
with some thoughts for future work.

Notation: E[x | y] denotes the expected value of x, given y.
Pr[A | y] is the probability of an event A, given y.

2. Problem formulation and background

This paper considers the output tracking problem for a class of
systems of the form

ϕ(t + 1) = Aϕ(t)+ Bu(t) (1a)

y(t) = θ⊤ϕ(t)+ v(t) (1b)

where ϕ(t) ∈ Rnp is a deterministic regression vector whose
elements are functions of past control inputs (deterministic
decision variables) u, and A ∈ Rnp×np and B ∈ Rnp are known
matrices determined by basis functions. The variable y(t) ∈ Rnp

is the process output and v(t) ∈ Rnp is an additive, stationary
process disturbance assumed to be a sequence of independent
and identically distributed Gaussian random variables with zero
mean and variance r . The vector θ ∈ Rnp contains the unknown
parameters, θ =


θ1, θ2, . . . , θnp

⊤, where the set {θj}
np
j=1 is drawn

fromamultivariate Gaussian distribution at initial time t = t0 with
mean θ̂ (t0) and covariance P(t0). The model (1b) is often referred
to as a linear regression.

The system (1) is a linear, time-invariant, single-input, single-
output (siso) system, and we assume that the pair (A, B)
is controllable and stable; this formulation includes systems
modeled by orthogonal basis functions (obfs). The most well-
known member of this model class is the fir model; other
common formulations include the Laguerre (Wahlberg, 1991)
and Kautz (Wahlberg, 1994) models; see also Finn, Wahlberg,
and Ydstie (1993) for a combination of the fir and Laguerre
structures. Heuberger, Van den Hof, and Wahlberg (2005) provide
a comprehensive overview of modeling and identification with
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