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a b s t r a c t

A system is said to be opaque if an intruder that observes its evolution through a mask cannot infer
that the system’s evolution belongs to a given secret behavior. Opacity verification is the problem of
determining whether the system is opaque with respect to a given secret or not. In this paper we address
the decidability of the opacity verification problem.Using reduction approaches,we show that verification
of initial-state, current-state, and language opacity is undecidable in labeled Petri nets.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Opacity in discrete event systems (DESs) has been extensively
investigated over the last decade. For a thorough and comprehen-
sive review on this topic, we refer the reader to Jacob, Lesage,
and Faure (2016) and Wu and Lafortune (2013). Consider a sys-
temwhose evolution canbe observedby an external observer (usu-
ally called an intruder in this setting) through amask that partially
hides the event occurrence and the state trajectory. A system is said
to be opaque with respect to a given secret behavior when the in-
truder cannot infer if the system’s evolution belongs to the secret
based on the available observation. It is typically assumed that the
intruder has full knowledge of the system’s structure.

Several opacity properties have been defined for DESs, among
which we focus on current-state opacity, initial-state opacity and
language-based opacity.
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• When dealing with current-state opacity, the secret is defined
as a set of states and the initial state is (partially) known to
the intruder. A system is current-state opaque if the intruder
is never able to establish if the current state of the system is
within the set of secret states (Bryans, Koutny, & Ryan, 2005;
Saboori & Hadjicostis, 2007; Tong, Li, Seatzu, & Giua, 2015a).

• When dealing with initial-state opacity, the secret is also
defined as a set of states and the intruder has no knowledge
about the initial state. A system is initial-state opaque if the
intruder cannot establish if the evolution of the system has
started from a secret state. Initial-state opacity (ISO) has been
defined in the Petri net framework by Bryans et al. (2005).
Saboori and Hadjicostis (2008) proposed a new ISO definition
in the automaton framework that we extended to Petri nets in
Tong, Li, Seatzu, and Giua (2015b). In this paper we call it reach-
initial-state opacity (R-ISO). As discussed in detail in Section 4, R-
ISO is a particular case of ISO andmay bemeaningful in a variety
of security problems.

• In the case of language-based opacity, the secret is defined as
a language, i.e., a set of event sequences, and the initial state is
(partially) known to the intruder. A system is language-based
opaque if the intruder cannot establish if the evolution of the
system belongs to the secret. Several types of language-based
opacity properties have been defined. For instance, language
opacity, weak opacity (Lin, 2011) and strict language opacity
(Tong, Li, Seatzu, & Giua, 2016b).
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In the framework of automata two types of observationmasks have
been investigated in the literature: static and dynamic (Cassez,
Dubreil, & Marchand, 2012; Lin, 2011). A mask is static if the set
of events that the intruder can observe is fixed. It is dynamic if
the set of observable events changes with the state or the trace
of the system. Obviously, the dynamic mask is a generalization of
the static one. In Petri nets, similar observation masks have been
defined (Tong, Li, & Giua, 2016). In this work we focus on the
opacity problems in (unbounded) labeled Petri nets, i.e., Petri nets
with static observation masks.

Opacity verification (Lin, 2011; Saboori & Hadjicostis, 2011,
2013; Tong et al., 2016b; Tong, Li, Seatzu, & Giua, 2017; Wu
& Lafortune, 2013) consists in determining whether a system is
opaque with respect to a given secret. When opacity is violated,
different approaches (Cassez et al., 2012; Dubreil, Darondeau, &
Marchand, 2010; Falcone & Marchand, 2015; Tong, Li, Seatzu,
& Giua, 2016a; Wu & Lafortune, 2014) have been proposed to
turn an unopaque system into an opaque one. In this paper, we
study the decidability of opacity verification problems in labeled
Petri net systems, focusing on current-state, reach-initial-state and
language opacity. In the sequel of this paper we use ‘‘opacity
problem’’ to denote ‘‘opacity verification problem’’ for simplicity.

Many contributions related to the decidability of opacity
problems in DESs have been proposed in Bryans, Koutny, Mazaré,
and Ryan (2008); Bryans et al. (2005), Cassez (2009), Jacob et al.
(2016) and Saboori and Hadjicostis (2010). It has been shown
that current-state, initial-state and language opacity problems are
decidable in finite automata (Bryans et al., 2008). Nonetheless, the
current-state opacity problem in probabilistic finite automata and
the language-based opacity in timed automata are undecidable
(Cassez, 2009; Saboori & Hadjicostis, 2010). Bryans et al. (2005)
have proven that for bounded Petri nets current-state and initial-
state opacity problems are decidable. Moreover, general opacity
problems in transition systems are undecidable, as well as the
initial-state opacity problem in Petri nets (Bryans et al., 2008).
Decidability of opacity problems in different systems has been
surveyed in Jacob et al. (2016). However, the decidability of
current-state, reach-initial-state and language opacity problems in
Petri nets still requires further investigation.

The main contribution of this work consists in proving that
current-state, reach-initial-state and language opacity problems
are undecidable. All proofs are carried out using reduction.

The rest of the paper is organized as follows. In Section 2 basic
notions of Petri nets are recalled. The decidability of the current-
state, reach-initial-state and language opacity problems is dis-
cussed in Sections 3–5, respectively. Finally, conclusions are drawn
in Section 6 where we also discuss our future work in this area.

2. Preliminaries

In this sectionwe recall the basics of labeled Petri nets. Formore
details, we refer the reader to Peterson (1981) and Seatzu, Silva,
and van Schuppen (2013).

A Petri net is a structure N = (P, T , Pre, Post), where P is a set
of places graphically represented by circles; T is a set of transitions
graphically represented by bars with P ∪ T ≠ ∅ and P ∩ T = ∅;
Pre : P × T → N, and Post : P × T → N are the pre- and
post-incidence functions that specify the arcs directed fromplaces to
transitions, and vice versa, where N = {0, 1, 2, . . .}. The incidence
matrix of a net is denoted by C = Post − Pre. A transition without
any input place is called a source transition.

A marking is a vector M : P → N that assigns to each place
of a Petri net a non-negative integer number of tokens, graphically
represented by black dots. The marking of place p is denoted by
M(p). A marking can also sometimes be represented as a multiset

M =


p∈P M(p)·p. A Petri net system ⟨N,M0⟩ is a netN with initial
markingM0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may
fire yielding a new marking M ′

= M + C(·, t). We write M[σ ⟩ to
denote that the sequence of transitions σ = tj1 · · · tjk is enabled at
M , andM[σ ⟩M ′ to denote that the firing of σ yieldsM ′. We denote
L(N,M0) = {σ ∈ T ∗

|M0[σ ⟩} the set of all transition sequences
enabled atM0.

A marking M is reachable in ⟨N,M0⟩ if there exists a sequence
σ ∈ T ∗ such that M0[σ ⟩M . The set of all markings reachable
from M0 defines the reachability set of ⟨N,M0⟩ and is denoted
by R(N,M0). A Petri net system is bounded if there exists a non-
negative integer k ∈ N such that for any place p ∈ P and for any
reachable markingM ∈ R(N,M0),M(p) ≤ k holds.

A labeled Petri net (LPN) system is a 4-tuple G = (N,M0, E, ℓ),
where ⟨N,M0⟩ is a Petri net system, E is an alphabet (a set of la-
bels) and ℓ : T → E ∪ {ε} is a labeling function that assigns
to each transition t ∈ T either a symbol from E or the empty
word ε. A transition labeled with a symbol in E is said to be ob-
servable; a transition labeled with the empty word is unobserv-
able (or silent). The labeling function can be extended to sequences
ℓ : T ∗

→ E∗ as ℓ(σ t) = ℓ(σ )ℓ(t) with σ ∈ T ∗ and t ∈ T . Note
that σ could be the empty sequence (i.e., a sequence of events with
length 0) and in this case, ℓ(σ ) = ε. The generated language of G
is L(G) = {w ∈ E∗

|∃σ ∈ L(N,M0) : w = ℓ(σ )}. The generated
language from a marking M is L(N,M) = {w ∈ E∗

|∃σ ∈ T ∗
:

M[σ ⟩, w = ℓ(σ )}. Therefore, L(G) = L(N,M0). Given a set of
markings M, L(N, M) =


M∈M L(N,M) is defined.

Finally,we generalize the notion of LPN systems to dealwith the
case where the net has a set (could be infinite) of initial markings
M0 ⊆ Nm. In such a case, the LPN system is denoted as G =

(N, M0, E, ℓ), its reachability set is R(N, M0) =


M0∈M0
R(N,M0),

and the generated language of G is L(G) = L(G, M0).

3. Current-state opacity

In this section we discuss the decidability of the current-state
opacity problem in LPN systems. First, we recall the notion of
current-state opacity2 defined in Bryans et al. (2005).

Definition 1 (Petri Net Current-StateOpacity). LetG = (N, M0, E, ℓ)
be an LPN system and S ⊆ R(N, M0) be a secret set. G is said to be
current-state opaque (CSO) wrt S if for allM0 ∈ M0,M ∈ S and σ ∈

L(N,M0) such that M0[σ ⟩M , there exist M ′

0 ∈ M0, σ
′
∈ L(N,M ′

0)
such that ℓ(σ ′) = ℓ(σ ) and M ′

0[σ
′
⟩M ′

∉ S.

An LPN system being current-state opaque means that for every
transition sequence σ leading to a marking in the secret set,
there exists another transition sequence σ ′ whose firing leads to
a nonsecret marking, and the two sequences produce the same
observation ℓ(σ ) = ℓ(σ ′). As a consequence, when the intruder
observes the behavior of a current-state opaque LPN system, it
cannot conclude whether the current state is contained or not in
the secret.

We point out that an LPN system with a finite set of initial
markings can always be converted into an equivalent LPN system3

with one initial marking. The procedure requires adding two
new places, called p0 and p′

0, and r = |M0| new unobservable
transitions, called tu1, . . . , tur . The initial marking of the new net
assigns a single token to place p0. The firing of a transition tui
(with i = 1, . . . , r) moves the token from p0 to p′

0 and produces

2 In Bryans et al. (2005) it is assumed that M0 is finite, and the property is called
final opacity. However, ‘‘current-state opacity’’ is used by most of the researchers.
3 ‘‘Equivalent’’ refers to the fact that two nets have the same opacity property.
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