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a b s t r a c t

In this paper, we consider the distributed sensor fusion problem over sensor networks under directed
communication links and bandwidth constraint. We investigate the impact of the additive quantization
model on the proposed two-stage averaging based algorithm. Existing works on the effect of the
additive model show that convergence can be guaranteed only if the quantization error variances form
a convergent series. We show that the proposed algorithm achieves the performance of the optimal
centralized estimate even if the quantization error variances are not vanishing. This is guaranteed by
establishing a law of the iterated logarithm for weighted sums of independent random vectors. Moreover,
an explicit bound of the convergence rate of the proposed algorithm is given to quantify its almost sure
performance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In a typical sensor fusion problem in sensor networks, nodes
make noisymeasurements of variables of interest. In this paper,we
focus on a specific and simplemodel of sensor fusion problem, e.g.,
Ribeiro and Giannakis (2006), Xiao, Boyd, and Lall (2005) and Xiao
and Luo (2005), where the common goal is to estimate the scalar2
using observations from N nodes: yi = θ + ni, i = 1, 2, . . . ,N ,
where ni are zero mean, i.i.d. Gaussian noises. The main concern is
how to utilize the samples collected from the nodes to produce a
desirable estimate of θ . It is well known that if all {yi}Ni=1 are avail-
able at a fusion center perfectly, then the best way is to take the av-
erage and produce the sample mean estimate θ̂ , (1/N)

N
i=1 yi.

✩ The material in this paper was partially presented at the 54th IEEE Conference
on Decision and Control, December 15–18, 2015, Osaka, Japan. This paper was
recommended for publication in revised form by Associate Editor Wei Ren under
the direction of Editor Ian R. Petersen.
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2 Our algorithm can be easily extended to the vector case θ ∈ Rmθ with

measurement yi = Hiθ+ni ∈ Rmy , which is a popularmodel in power systems (Xie,
Choi, Kar, & Poor, 2012). This is done by introducing a second consensus algorithm
as in Xiao et al. (2005). Similar convergence results can be established.

In this paper, we focus on distributed solutions of the above
sensor fusion problem in ad hoc networks. The procedures of dis-
tributed algorithms are generally based on successive refinements
of local estimates at nodes, e.g., consensus-based algorithms (Aysal
& Barner, 2010; Kar,Moura, & Ramanan, 2012; Xiao et al., 2005; Xie
et al., 2012; Zhu, Chen, Ma, Yang, & Guan, 2015; Zhu, Soh, & Xie,
2015), diffusion algorithm (Cattivelli & Sayed, 2010), and learning-
based algorithm (Rad & Tahbaz-Salehi, 2010). Onemajor challenge
of ad hoc networks is that limitations in bandwidth place tight
constraints on the rate of information exchanged between nodes,
i.e., data at each node needs to be quantized prior to its transmis-
sion to the neighboring nodes.

Recently, much work has been done to examine the effects
of several quantizers on distributed algorithms, e.g., probabilistic
quantizers (Aysal, Coates, & Rabbat, 2008; Carli, Fagnani, Frasca,
& Zampieri, 2010; Kar & Moura, 2010), which is first used in the
context of consensus in Aysal et al. (2008), deterministic quantiz-
ers (Cai & Ishii, 2011; Chamie, Liu, & Başar, 2014; Kashyap, Başar,
& Srikant, 2007; Liu, Li, Xie, Fu, & Zhang, 2013), and dynamic
quantization schemes (Li, Fu, Xie, & Zhang, 2011; Li, Liu, Wang, &
Lin, 2013; Li & Xie, 2011). A rule of thumb is to choose the algo-
rithm state as an approximation of θ̂ . However, the above works
show that there is always some gap between the state and θ̂ for
static quantizers,which is a function of the quantization resolution.
The dynamic encoding/decoding schemes in Li et al. (2011) can
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eliminate this gap at the price of global knowledge of some
topology-related quantities, which is generally not possible for dis-
tributed algorithms. The scheme proposed in Fang and Li (2010) is
closely related to our work, where the authors introduced a differ-
ent form of estimator based on sequence averaging for undirected
networks. It was shown that θ̂ can be achieved in the mean square
sense even with the basic probabilistic quantizer.

Most of the aforementioned works assume symmetric commu-
nication links between nodes. Actually, in ad hoc networks, com-
munication links between certain pairs of nodes may be directed
due to non-homogeneous interference, packet collision and so on.
To tackle the directed nature of communication links coupled with
quantization residues, we proposed a two-stage distributed esti-
mation algorithm using the basic probabilistic quantizer in Zhu,
Soh, and Xie (2015). This algorithm can achieve the centralized
θ̂ both in the mean square and almost sure senses without any
spectral knowledge of the corresponding Laplacianmatrix and out-
neighbor information. We remark that Zhu, Soh, and Xie (2015)
considers the scenario that the nodes take a snapshot measure-
ment of the field, and the consensus strategy is adopted. This can
also be formulatedwithin the consensus+innovation framework in
Xie et al. (2012), allowing the combination of the two time scales
as in Cattivelli and Sayed (2010), Kar and Moura (2011), Kar et al.
(2012) and Zhu, Chen et al. (2015) for continuous observations.
However, such formulation in Xie et al. (2012) cannot handle the
situation with quantized transmissions.

In this paper, we extend our previous work and consider the
sensor fusion problemby employing the general additive quantiza-
tionmodel. The analysis for the generalmodel is not so straightfor-
ward as in Zhu, Soh, and Xie (2015) for the probabilistic quantizer,
since no a priori knowledge on the boundedness of the quantiza-
tion errors can be ensured. Hence those approaches heavily rely-
ing on such boundedness as in the dithered quantization schemes
(Aysal et al., 2008; Carli et al., 2010; Zhu, Soh, & Xie, 2015) are
not applicable either. For symmetric communication topologies,
consensus problemwith additive quantizationmodel has been ex-
amined in Yildiz and Scaglione (2008), where the necessary and
sufficient conditions for consensus inmean square sense are given.
The results indicate, however, that the states of all nodes converge
to the same value, with bounded error, with respect to the central-
ized θ̂ if and only if the quantization noise variances form a con-
vergent series. To achieve this, two dedicatedly designed coding
schemes are proposed. Here, we significantly relax the above re-
strictive conditions on the quantization noise. A preliminary ver-
sion of this paperwas presented at CDC’15 (Zhu, Liu, Xu, Soh, & Xie,
2015). The main contributions of the current paper are twofold:
(i)We show thatwith the two-stage distributed algorithm, the cen-
tralized θ̂ can be achieved almost surely even if the quantization
noise variances are not vanishing. In our approach, only the exis-
tence of slightly higher than the quadratic moment of the quanti-
zation noise is needed. This greatly improves the results in Yildiz
and Scaglione (2008) and Zhu, Soh, and Xie (2015) and may sim-
plify the design of corresponding coding schemes; (ii) An explicit
bound of the convergence rate is provided, which is not available
for the consensus algorithms in the literature and cannot be ob-
tained using existing approaches in Aysal et al. (2008), Cai and Ishii
(2011), Carli et al. (2010), Cattivelli and Sayed (2010), Chamie et al.
(2014), Kar and Moura (2010), Kar et al. (2012), Liu et al. (2013),
Yildiz and Scaglione (2008) and Zhu, Soh, and Xie (2015). Our tool
is borrowed fromprobability theory, which establishes a law of the
iterated logarithm for weighted sums of random vectors.

The rest of the paper is organized as follows: In Section 2, we
present the problem formulation. In Section 3, a law of the iterated
logarithm for weighted sums of random vectors is given, based on
which the almost sure performance of the proposed algorithm is

Table 1
Two-stage averaging based distributed estimation algorithm.

Initialize 0 < α < 1/maxi di, zii(0) = 1, zij(0) = 0, ∀j ≠ i, and xi(t0) = yi
Stage 1: Distributed estimation of the left eigenvectorω
(1.1) zi(t + 1) = zi(t) + α


j∈Ni

aij[Q(zj(t)) − Q(zi(t))];
(1.2) z̄i(t + 1) =

t
t+1 z̄i(t) +

1
t+1 zi(t + 1);

Stage 2: Approximation of the centralized estimate θ̂

(2.1) ϵi(t) ,


 1
Nz̄ii(t0)

− 1

xi(t0), t = t0, 1

Nz̄ii(t)
−

1
Nz̄ii(t − 1)


xi(t0), t > t0;

(2.2) xi(t + 1) = xi(t)+ ϵi(t)+α


j∈Ni
aij[Q(xj(t)+ ϵj(t))−Q(xi(t)+ ϵi(t))];

(2.3) x̄i(t + 1) =
t−t0

t−t0+1 x̄i(t) +
1

t−t0+1 xi(t + 1).

provided in Section 4. Section 5 discusses the implications of our
results. Finally, Section 6 concludes the paper.
Notation: o(·) and O(·) are the Landau symbols. We simply use
f (k)+ok in the context of f (k)+o(f (k)). ∥·∥2 and ∥·∥F denote the
spectral norm and Frobenius norm for matrices with compatible
vector ℓ2-norm ∥ · ∥. E{x} and Cov(x) denote its expectation and
covariance matrix for a random vector x, respectively.

2. Problem formulation

Consider a sensor network composed ofN nodes, which ismod-
eled as a weighted directed graph G = (V, E,A), where V =

{1, 2, . . . ,N}, E ⊂ V × V denotes all the unidirectional commu-
nication links between nodes and A = [aij]N×N is composed of
weights aij > 0 associated with each edge (j, i) ∈ E . We do not
consider self-loops in graph G, i.e., aii = 0, ∀i. The directed edge
(j, i) means that node i can receive data from node j. We collect all
these nodes in the set Ni = {j|(j, i) ∈ E} and call them the neigh-
bors of node i. Denote by di ,


j∈Ni

aij the in-degree of node i. Let
L , D − A, where D , diag{d1, d2, . . . , dN}, represent the Lapla-
cian matrix of graph G. It is clear that L1 = 0, and there is a left
eigenvector ω = [ω1, . . . , ωN ]

T with ωTL = 0 and 1Tω = 1.
Our distributed algorithm involves an estimation of θ at each

node with local measurement yi. In the case of limited bandwidth,
each node is only allowed to transmit the quantized dataQ(·) to its
neighbors. In this paper, we adopt the additive quantizationmodel
as in Gersho and Gray (1992) and Yildiz and Scaglione (2008).
Denote by zi(t) , [zi1, zi2, . . . , ziN ]

T
∈ RN or mi(t) ∈ R the

unquantized message of node i at iteration t , then the quantized
value can be expressed as

Q(zi(t)) = zi(t) + ui(t) or Q(mi(t)) = mi(t) + vi(t), (1)

where ui(t) ∈ RN and vi(t) ∈ R are the quantization errors,
which might have unbounded supports (e.g., quantization with
finite precision in Kar & Moura, 2010).

The two-stage averaging based distributed estimation algo-
rithm run by node i is summarized in Table 1 (see Zhu, Soh, & Xie,
2015 for some implementation considerations). In the algorithm,
Stage 1 first runs for t0 ≥ 0 steps, then Stage 2 is triggered. After
that, at each iteration, Stage 1 and Stage 2 will be sequentially ex-
amined. In examining (1.1) and (2.2), each node incorporates both
its unquantized message and the quantized data into updating the
local estimate, which is called the compensating updating rule in
Carli et al. (2010). The averaging quantity x̄i(t) rather than xi(t) is
chosen as the approximation of the centralized θ̂ in the algorithm.
Besides, the additive quantizationmodel in (1) may result in quan-
tization errors with unbounded supports, which is a big difference
from the dithered quantization schemes used in Aysal et al. (2008),
Carli et al. (2010) and Zhu, Soh, andXie (2015).Wediscuss the com-
munication cost of the proposed algorithm. At each iteration t , each
node i transmits its zi(t) and xi(t)+ϵi(t) to its neighbors. Thus, the
total number of such transmissions across the entire network at
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