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a b s t r a c t

For the double integrator with matched Lipschitz disturbances we propose a continuous homogeneous
controller providing finite-time stability of the origin. The disturbance is compensated exactly in finite
time using a discontinuous function through an integral action. Since the controller is dynamic, the
closed loop is a third order system that achieves a third order sliding mode in the steady state. The
stability and robustness properties of the controller are proven using a smooth and homogeneous strict
Lyapunov function (LF). In a first stage, the gains of the controller and the LF are designed using a method
based on Pólya’s Theorem. In a second stage the controller’s gains are adjusted through a sum of squares
representation of the LF.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Robustness is one of the main issues in control systems theory.
Hence, several approaches to deal with system’s disturbances
have been developed. Sliding Mode Control has become one of
the most efficient techniques to control uncertain plants under
non-vanishing disturbances (Edwards & Spurgeon, 1998; Utkin,
Guldner, & Shi, 2009). Such controllers are able to compensate,
theoretically exactly, matched disturbances by confining the
system’s trajectories in a properly chosen sliding surface. In
general, this is achieved using discontinuous controllers with
theoretical infinite switching frequency (Ding, Levant, & Li, 2016;
Levant, 2003; Utkin et al., 2009). In this paper we consider the
disturbed double integrator

ẋ1 = x2, ẋ2 = u + ∆(t), (1)

where x = [x1, x2]⊤ ∈ R2 is the state, u ∈ R is the control input
and ∆(t) ∈ R is a disturbance. We assume that ∆ is a Lipschitz
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function, thus, its derivative exists for almost all t ≥ 0 and is
uniformly bounded, i.e., |∆̇(t)| ≤ µ for a known µ ∈ R. The
problem is to drive the state x to the origin in finite-time by using a
continuous control signal despite the disturbance ∆. Belowwe list
the reasons whereby most of the known Sliding Mode controllers
(Conventional or Higher-Order) are unable to solve the stated
problem.

• Conventional Sliding Mode controller (Utkin et al., 2009). This
controller is discontinuous and a sliding variable with relative
degree one must be designed. The convergence of the state to
the sliding surface is in finite time but exponential to the origin.
This controller can reject only bounded disturbances.

• Second Order Sliding Mode (SOSM) controller, Super-Twisting
Algorithm (STA) (Levant, 1993). To apply the STA to (1), it
is necessary to design a sliding variable with relative degree
one. STA has two advantages, the control signal is continuous,
and the Lipschitz disturbances can be rejected. However the
convergence rate of the state to the origin is exponential.

• SOSM controller, Twisting Algorithm (Levant, 1993). This
controller does not require sliding variable design, and provides
finite time convergence of the state to the origin. However, the
control signal is discontinuous, and the disturbances must be
bounded. It is worth to recall that this homogeneous controller
is capable to ensure convergence of x1 and x2 to zero in
finite time despite of a bounded perturbation. Moreover, under
discretization, such controller guarantees quadratic precision of
x1 with respect to the sampling period (Levant, 1993).

• Third Order Sliding Mode controllers by means of the introduc-
tion of a virtual state (Bartolini, Ferrara, & Usai, 1998; Levant,
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1993). The controllers of this kind provide a continuous con-
trol signal, and can avoid the designing of a sliding variable. Al-
though they are able to achieve a second order sliding mode,
they require, as information, x1, x2 and ẋ2. This is also the case
of the smoothed Integral High-Order Sliding Modes (Levant &
Alelishvili, 2007).

Recently, in Edwards and Shtessel (2016), a continuous Slid-
ing Mode controller was proposed. However, since such algorithm
is not homogeneous, the issue of precision requires more inves-
tigation. A new class of homogeneous continuous Sliding Mode
controllers (based on a generalization of the STA) for systems
with relative degree two was announced (Chitour, Harmouche, &
Laghrouche, 2016; Fridman, Moreno, Bandyopadhyay, Kamal, &
Chalanga, 2015; Kamal, Chalanga, Moreno, Fridman, & Bandyopad-
hyay, 2014; Kamal,Moreno, Chalanga, Bandyopadhyay, & Fridman,
2016; Moreno, 2016; Zamora, Moreno, & Kamal, 2013). These new
controllers are homogeneous of negative degreewithweights r1 =

3 for x1 and r2 = 2 for x2. This property ensures cubic and quadratic
precision, respectively, with respect to the sampling period (Lev-
ant, 1993).

In this paper we propose a controller (announced in Torres-
Gonzalez, Fridman, & Moreno, 2015) to solve the problem stated
above. Since the part of the algorithm ensuring disturbance
compensation has a structure as the Twisting algorithm, it is called
Continuous Twisting Algorithm (CTA). Such controller has the
following advantages:

• The generated control signal is continuous;
• Lipschitz disturbances can be compensated;
• The states x1 and x2 converge to zero in finite time;
• The closed loop achieves a third-order sliding mode with

respect to the system’s states and the state of the controller;
• Under discretization, the controller ensures cubic and quadratic

precision with respect to the sampling period for x1 and x2,
respectively.

For the controller of the present paper, we provide a LF designed
with the methodology given in Sanchez and Moreno (2014), that
consists in proposing a generalized form (GF) as a candidate LF.
The positive definiteness of the candidate LF (and the negative
definiteness of its derivative along the system’s trajectories)
is verified by using the idea in the Pólya’s theorem (Hardy,
Littlewood, & Pólya, 1988; Pólya, 1928). In this paper we perform
a second step to adjust the controller’s gains by using a sum of
squares (SOS) representation of the LF. An important reason to
use the SOS procedure is that it reduces the problem of designing
the controller’s gains to an LMI problem. Moreover, the procedure
allows to include optimization criteria, in this case, we have
maximized the bound of the admitted disturbances. In this paper
we use the software SOSTOOLS (Prajna, Papachristodoulou, &
Parrilo, 2002–2005) to solve such LMI/optimization problem.

Although there exist some other procedures to design LFs for
High Order Sliding Modes (Polyakov & Poznyak, 2012; Sanchez &
Moreno, 2012), they are very difficult to apply in the present case
and generally provide non-smooth LFs. Moreover, they are useful
only for SOSM (Polyakov & Poznyak, 2012) or require the solutions
of the system (Sanchez & Moreno, 2012). Unlike those methods,
GFs approach is quite more general in the sense that for any
homogeneous system (of any order) described by GFs the method
provides a systematic procedure to search for a differentiable LF
that is also a GF. Thus, since our controller is described by GFs, this
method is very suitable.

It is important to mention that the controllers provided in
Kamal et al. (2016) and Moreno (2016) have similar properties as
those of the CTA. They also possess differentiable LFs, however, the
designing of their gains consist in solving nonlinear inequalities in
the parameters of the LFs and the controller’s gains. Unfortunately

such controllers are not described by GFs, so that, they cannot be
analysed and designed directly following the procedure used in the
present work.

This paper is organized as follows. In Section 2 we present the
CTA controller and a smooth LF. We also discuss some features
of the controller and a procedure to design its gains. Section 3
shows the procedure to design the LF and the computation of some
controller’s gains. In Section 4 some numerical simulations are
presented. Finally in Section 5 some concluding comments about
the CTA are given.

2. Main results

2.1. The controller

To solve the stated problem in the previous section we propose
the following dynamic controller

u(x) = −k1⌈x1⌋
1
3 − k2⌈x2⌋

1
2 + η

η̇ = −k3⌈x1⌋0 − k4⌈x2⌋0,
(2)

where the notation ⌈·⌋
γ

= | · |
γ sign(·) was used. The reals ki >

0, i = 1, . . . , 4, are parameters to be designed. For simplicity we
define the vector of parameters k = [k1, . . . , k4]⊤. Notice that the
right hand side on the second equation in (2) has the structure of
the Twisting controller (Levant, 1993), this is integrated through η
generating a continuous signal that allows the controller to reject
a perturbation with bounded derivative. The following theorem
constitutes one of the main results of this paper.

Theorem 1. For any positive real µ < ∞, x = 0 is a finite time
stable equilibrium point of (1) with the controller (2) for properly
designed gains ki, i = 1, . . . , 4.

The proof of this theorem is Lyapunov based and it is given in
Section 4. The methodology for the adjustment of the controller’s
gains is presented in Section 4. However in Section 2.4 we provide
some examples to design the parameters of the controller.

2.2. Lyapunov function

The closed loop (1), (2) exhibits useful homogeneity properties
that we exploit in this paper. In Appendix A we recall some
definitions about homogeneity. Define the virtual state x3 , η +

∆(t), by combining (2) and (1) the closed loop system is given by

ẋ1 = x2
ẋ2 = −k1⌈x1⌋

1
3 − k2⌈x2⌋

1
2 + x3

ẋ3 = −k3⌈x1⌋0 − k4⌈x2⌋0 + ∆̇(t).
(3)

The third equation of (3) is discontinuous and uncertain due to the
sign functions and the disturbance term. Thus, it can be associated
with the differential inclusion (DI) ẋ3 ∈ −k3⌈x3⌋0 − k4⌈x4⌋0 +

[−µ, µ], (sign function is defined in Appendix A). Therefore, (3)
is associated with the DI ẋ ∈ F(x) where the set valued map
F is given by F(x) = {y ∈ Rn

: y = [x2, x3, ρ]
⊤
}, for all

ρ ∈ {−k3⌈x3⌋0−k4⌈x4⌋0+[−µ, µ]} ⊂ R. This DI is homogeneous
of degree q = −1withweights r = [3, 2, 1]⊤. Hence, in this paper,
the solutions of (3) are understood in the sense of Filippov (1988).

In nominal case, i.e., µ = 0, the functions in the vector field of
(3) are a special class of functions that have interesting properties.
Classically, a homogeneous polynomial function is called form. In
Sanchez and Moreno (2014) such set of functions was extended in
order to include the kind of functions as those in the vector field of
(3). Those functions are called GFs. A function f : Rn

→ R is a GF of
degreem if: (a) it is a homogeneous function of degreem for some
vector of weights r; (b) it consists of sums, products and sums of
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