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a b s t r a c t

Motivated by area coverage optimization problems with time-varying risk densities, in this paper we
propose a decentralized control law for a team of autonomous mobile agents in a 2-D area such that
their asymptotic configurations optimize a generalized non-autonomous coveragemetric. We emphasize
that the generalized non-autonomous coverage metric explicitly depends on a nonuniform time-varying
measurable scalar field that is defined by the trajectories of a set of mobile targets (distinct from the
agents). The time-varying density that we consider here is not directly controllable by agents. We show
that under certain conditions on the density defined on a closed bounded region of operation, the agents
configure themselves asymptotically to optimize a related generalized non-autonomous coveragemetric.
A set of simulations illustrates the proposed control.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recent technological advancements of networked mobile
agents have received a thorough attention due to their promis-
ing applications in military and civilian domains, such as harbor
patrolling (Miah, Nguyen, Bourque, & Spinello, 2014; Simetti &
Cresta, 2007), perimeter surveillance (Pimenta et al., 2013; Zhang,
Fricke, & Garg, 2013), search and rescue missions (Hu, Xie, Lum, &
Xu, 2013), and cooperative estimation (Spinello & Stilwell, 2014),
among others. In this context, an important class of applications
involves area coverage, where a team of mobile agents spatially
configure themselves over an area of interest to maximize a cov-
erage metric that typically encodes agents’ performance and a risk
density thatweights points in the area. Area coverage optimization
with non-autonomous coverage metric typically emerges from
time-varying risk densities, associated with uncontrollable events
in the area to be covered. This scenario models, among others, a
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situation when an environment under observation is influenced
by the sudden entrance of mobile targets (or events) that influ-
ence the risk function. Here we show that under certain conditions
on the nonuniform measurable risk field, a decentralized state-
feedback control law spatially configures a team of autonomous
mobile agents to optimize a generalized non-autonomous cover-
age metric asymptotically, which mimics the maximization of de-
tecting a certain event in an area, for instance.

Developing motion control algorithms for networked mobile
agents has attracted considerable attentiondue to their capabilities
to address, in part, various classes of problems in the field of
multi-agent systems, such as area coverage (Caicedo-Nunez &
Zefran, 2008; Cortes, Martinez, & Bullo, 2005; Cortes, Martinez,
Karatas, & Bullo, 2004; Kantaros, Thanou, & Tzes, 2015; Leonard
& Olshevsky, 2013; Miah, Nguyen, Bourque, & Spinello, 2015;
Pimenta, Kumar, Mesquita, & Pereira, 2008; Zhong & Cassandras,
2011), locational optimization (Guruprasad & Ghose, 2013), target
tracking (Yang, Freeman, & Lynch, 2008); and environmental
tracking and monitoring (Porfiri, Roberson, & Stilwell, 2007). The
work in Cortes, Martinez, Karatas, and Bullo (2002), Lekien and
Leonard (2009) and Lee, Diaz-Mercado, and Egerstedt (2015)
have addressed nonuniform coverage control problems with
time-varying density. Cortes et al. (2002) considered a class of
time-varying density functions such that the coverage metric is
conserved, and therefore the resulting non-autonomous coverage
would be a negative definite Lyapunov function along their
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proposed time-varying feedback law. Lee et al. (2015) addressed
several issues related to coverage control problems with time-
varying density functions and showed promising results with a
real-time implementation using Khepera III robots operating on
the ground. They proposed a motion control algorithm whose
trajectories are optimal with respect to non-autonomous coverage
metrics under thehypothesis that at the initial condition the agents
are overlapped with Voronoi centroids. In general, there is no
guarantee of optimality if this hypothesis is violated. In Zhong
and Cassandras (2011) the authors have combined area coverage
and data collection by proposing a task based algorithm, in which
agents use area coverage control to determine optimal spatial
locations, and trajectory control to maximize data collection
quality whenever data sources are detected in the domain.

The current work advances previously published work (Miah
et al., 2015) in proposing a methodology that takes into account
a time-varying density to optimize a related generalized non-
autonomous coverage metric. The main contribution of this paper
is two-fold. First, we introduce a state-feedback control law for a
group of autonomous agents such that a generalized time-varying
coveragemetric is optimized. Second, under a certain condition on
the time-varying density function that depends on the trajectories
of a set of mobile targets, we prove the asymptotic convergence of
agents’ states while optimizing the coverage metric. Trajectories
of moving targets are encoded in the coverage metric, so that
area coverage and target tracking are coupled through the optimal
motion control algorithm.

2. Systemmodel and problem formulation

We restrict to a 2-dimensional area coverage problem with
respect to a generalized non-autonomous coverage metric defined
over the area, which is represented by a closed bounded convex
set Ω ⊂ R2. The non-autonomous coverage metric relies on
agents’ individual area coverage performances, and therefore the
operating area is naturally partitioned among agents. In this work,
we employ the geometric Voronoi tessellation (Okabe, Boots,
Sugihara, & Chiu, 2000) as it is ubiquitous in cooperative strategies,
coordination tasks, and the interaction of robotic networks with a
physical environment.

We consider a group of n homogeneous mobile agents where
the motion of the ith, i ∈ {1, 2, . . . , n} ≡ I, agent is described
by a simple integrator as ṗ[i](t) = u[i](t), where p[i](t) =
x[i](t), y[i](t)

T is the 2-D position and u[i]
=


u[i]
x (t), u[i]

y (t)
T is

the velocity vector at time t ≥ 0. The state of the agents’ therefore
collectively evolves as

ṗ(t) = u(t), (1)

where p(t) =

p[1](t), . . . , p[n](t)

T
∈ R2n is the state of agents’

group at time t and u(t) =

u[1](t), . . . ,u[n](t)

T
∈ R2n the

corresponding velocity vector.
A time varying density defined in Ω weights each point with

a measure of risk. In area protection problems, the risk quantifies
the relative importance of different regions in Ω , dictating how to
distribute resources to protect the area. In this work we consider
a time varying risk density function affected by the motion of
m homogeneous mobile targets with 2D positions s[j](t) and 2D
velocities v[j], respectively, for jth, j = 1, . . . ,m target. We assume
that the risk density φ is C2 in Ω , and it is comprised of a time
invariant part which can be considered as a priori independent of
the targets, and of a time varying part associated to the motion of
the targets as φ(q, t) = φ̄(q) +

m
j=1 φj(q, t), where q ∈ Ω is a

point in the area, φ̄(q) > 0 represents the time-invariant density
in the absence of any target, and φj(q, t) is given by

φj(q, t) = exp

−

q − s[j](t)
2

/

2σ 2 (2)

where we have adopted Gaussian functions centered at targets’
positions, to reflect the assumption that each target contribution
to the risk distribution φ is maximal at its own position, and it
decreases with the relative distance from it. The choice of σ > 0
determines how narrow is the distribution of φj around s[j]. The
non-autonomous coverage control feedback proposed in this work
applies to C2 time varying density function, not necessarily of the
class just introduced.

For optimal spatial placements and area coverage, agents
partition the area to be covered using Voronoi tessellations, see
Okabe et al. (2000),where the optimality has to be intended as local
since the objective function is in general nonconvex (Schwager,
Rus, & Slotine, 2011). Following Guruprasad and Ghose (2013),
the area Ω is partitioned in terms of Voronoi cells V(p) =

(V1(p), . . . , Vn(p)), where the ith agent operates in the ith
Voronoi cell, Vi(p), defined by

Vi(p) =

q ∈ Ω : f (ri) ≥ f (rj), ∀j ∈ I \ {i}


, (3)

∀i ∈ I, ri = ∥q − p[i]
∥ is the Euclidean distance between

the point q ∈ Ω and the ith agent position, and f (·) is the
agent’s sensor performance function, which is differentiable in
its argument due to the selection of the performance function f
the Voronoi partition is the optimal tessellation of the workspace
(Bullo, Cortes, & Martinez, 2009, Proposition 2.1). Therefore, the
generators of the Voronoi partition are the states (p[1], . . . , p[n]).
For simplicity, Vi(p) will be denoted by Vi throughout the paper.
Intuitively,Vi represents an area where each point is better sensed
by the ith agent than to all other agents. The mass and the
centroid of the ith Voronoi cell with respect to the density φ are
respectively defined as Mi(Vi, t) =


Vi

φ(q, t)dΩ and Ci(Vi, t) =

1
M i(Vi,t)


Vi

qφ(q, t)dΩ .
Consider a time-varyingmap φ : Ω ×R+

→ R+ representing a
density function representing the likelihood that some events take
place over Ω at time t . This leads to a nonuniform time varying
distribution of agents, where more (less) agents are deployed
with higher (lower) values of the measure φ(q, t), ∀q ∈ Ω .
Furthermore, we assume that the sensing performance function
f (ri) is Lebesgue measurable, homogeneous, and that it is strictly
decreasing with respect to the Euclidean distance ri (Okabe et al.,
2000). Motivated by the locational optimization problem (Okabe
et al., 2000), we define the total coverage metric as

H(p, V, t) =

n
i=1


Vi

f (ri)φ(q, t)dΩ. (4)

The model (4) encodes how rich the coverage in Ω is. In other
words, higher H implies that the corresponding distribution of
agents achieves better coverage of the area Ω (Bullo et al.,
2009, Sec. 2.3.1). Hence, the problem can be stated as follows:
Given a time-varying density functionwhich is strictly positive and
twice differentiable inΩ , find a distribution of agents such that the
coverage H is maximized, i.e.,

max
p

H(p, V, t), subject to (1) as t → ∞. (5)

As established in Liu et al. (2009, Remark 1), smoothness of f with
respect to the argument and C2(Ω) risk density φ ensure that the
coveragemetric is C2 with respect to the generators of the Voronoi
tessellation, that are the agents’ states.

3. Main results

When the density φ is time-invariant, i.e., φ(q, t) = φ(q),
geometric center laws (see Lloyd, 1982; Okabe et al., 2000, for
details) on planar vehicles (agents) provide a well-established
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