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a b s t r a c t

This paper investigates cooperative output synchronization and bipartite output synchronization of a
group of linear heterogeneous agents in a unified framework. For a structurally balanced signed graph, we
prove that the bipartite output synchronization is equivalent to the cooperative output synchronization
over an unsigned graph whose adjacency matrix is obtained by taking the absolute value of each entry
in the adjacency matrix of the signed graph. We obtain a new H∞-criterion which is sufficient for both
cooperative output synchronization and bipartite output synchronization.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative consensus ofmulti-agent systems has been studied
widely in the literature (Olfati-Saber, Fax, & Murray, 2007). One
particular interest is the Cooperative Output Synchronization
(COS),where the outputs of the agents synchronize to each other or
to a reference trajectory. There are several applications for COS like
formation control, distributed control of UAVs, sensor networks,
etc. (Huang & Ye, 2014; Olfati-Saber et al., 2007). However, in a
number of contexts such as social networks, marketing or games
the interactions among agents are not necessarily cooperative
(Altafini, 2013), which are usually described by a signed graph,
where positive and negative edge weights denote cooperation and
competition among concerned nodes respectively.

One type of agreement over a signed graph is bipartite synchro-
nization, where agents reach an agreement over the modulus of
a variable. Bipartite Output Synchronization (BOS) studies output
synchronization of the agents in modulus with possibly different
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signs. There are many engineering applications for BOS like ana-
lyzing trustworthiness of the nodes in a network (Ermon, Schen-
ato, & Zampieri, 2009) and anticipating unanimity of the opinions
in a decision process in the presence of stubborn agents (Altafini &
Lini, 2015).

This paper studies a bipartite output synchronization problem
in comparison with Altafini (2013), Valcher and Misra (2014)
and Zhang and Chen (2014), which consider a bipartite state
synchronization problem. In contrast to other existing works
which have restrictive assumptions such as homogeneity of the
agents (Valcher & Misra, 2014; Zhang & Chen, 2014), undirected
communication graphs (Valcher & Misra, 2014) or first-order
dynamics (Altafini, 2013), our framework allows heterogeneity
of the agents, and a general directed and time-invariant signed
communication graph.

This paper is an extended version of Adib Yaghmaie, Su, and
Lewis (2016) andhas twomain contributions. Firstly,weprove that
the H∞-criterion for the COS problems reported in Adib Yaghmaie,
Lewis and Su (2016) and Huang and Ye (2014) can be relaxed for
some classes of communication graphs to ensure the existence
of solutions for a larger set of problems. Secondly, we prove that
the BOS problem is equivalent to the COS problem in the sense
that a control solution to one problem induces a control solution
to the other problem. In particular, that generalized H∞ criterion
introduced in the first contribution can also be applied to the BOS
problem which is more relaxed than the H∞ criterion reported in
Adib Yaghmaie, Su et al. (2016).
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The rest of the paper is organized as follows. In Section 2 we
introduce notations and preliminaries. In Section 3 we formulate
the BOS and the COS problems, and show that they are equivalent
via a novel transformation procedure. In Section 4we propose a re-
laxed H∞ criterion as a sufficient condition to ensure the existence
of a solution to the COS problem, which is applicable to the BOS
problem as well due to the aforementioned transformation proce-
dure. Simulation results are shown in Section 5, and conclusions
are drawn in Section 6.

2. Preliminaries

Let Rn×m be the set of n × m real matrices. In, 1n and 0 denote
the identity matrix of dimension n × n, an n-dimensional column
vector of 1, and a matrix of zeros with a compatible dimension,
respectively. The Kronecker product of two matrices A and B is
denoted as A ⊗ B. Let Ai ∈ Rni×mi for i = 1, . . . ,N . The operator
Diag1:N{Ai} builds a block diagonal matrix with N diagonal blocks,
whose ith diagonal block is Ai. The spectrum of matrix A is denoted
by spec(A) which is the multiset of its eigenvalues λi. The spectral
radius of A is denoted as ρ(A) = maxλi∈spec(A) |λi|. Given A =

[aij] ∈ Rn×m, let B := [A]n1:n2×m1:m2 ∈ R(n2−n1+1)×(m2−m1+1) be
a matrix formed by rows n1, . . . , n2 and columnsm1, . . . ,m2 of A.
The cardinality of a set V is denoted by |V |. A disjoint union of two
sets V 1 and V 2 is denoted by V 1

∪̇V 2. The following definition is
used throughout the paper.

Definition 1 (Huang, 2004). A pair of M1 = Ip ⊗ β, M2 =

Ip ⊗ τ incorporate a p-copy internal model of a square matrix A
if (β, τ ) is controllable and the minimal polynomial of A divides
the characteristic polynomial of β . �

By Zaslavsky (1982), a signed graph is represented by a touple
Gs

= (V , E, θ), where V = {v0, . . . , vN} denotes a finite vertex
set, E ⊆ V × V is a directed edge set, and θ : E → {+1, −1} is
a partial edge labeling function, which assigns either a positive or
negative sign to each edge. We call Gu

= (V , E) the corresponding
unsigned graph. A (follower) subgraph of Gu obtained by removing
the (leader) node v0 can be represented by anN×N adjacent matrix
Au

= [auij], where auij = 1 if (vj, vi) ∈ E, and auij = 0, otherwise. The
adjacency of node v0 and node vi is denoted by aui0 and it is defined
similarly. The upper stream neighbor set of a node v ∈ V is defined
as Nv = {v′

∈ V |(v′, v) ∈ E}. The in-degree matrix F of that
(follower) subgraph is defined as F = Diag1:N{|Nvi |}. The Laplacian
of that (follower) subgraph is defined as Ls = F − As, where
As

:= [asij := θ(vj, vi)auij] is the signed adjacent matrix. The signed
pinning gain from the node v0 to other nodes is denoted by the
matrix Gs

= Diag1:N{g s
i := θ(v0, vi)aui0}, and Gu

= Diag1:N{gu
i :=

aui0} is the unsigned pinning gain.While the entries of the adjacency
matrix Au of the unsigned graph Gu are nonnegative, the entries of
the adjacencymatrixAs ofGs can attain positive or negative values.

A directed graph is a directed tree if every node, except for one
node called the root, has an in-degree equal to one, and the root
node has its in-degree equal to zero, and in addition, each non-root
node is reachable from the root node via a directed path. A directed
graphhas a spanning tree if it contains a directed tree over all nodes.
A subgraph Gs

k = (Vk, Ek, θk), where Vk ⊆ V , Ek ⊆ E and θk being
the restriction of θ over Ek, is called a strongly connected subgraph
of Gs if each pair of different nodes vik, vjk ∈ Vk are reachable
from each other via a directed path in the subgraph. In particular, a
subgraph consisting of only one node, which is called a single-node
subgraph, is always a strongly connected subgraph. Gs

k ismaximal if
there does not exist another strongly connected subgraph, which
contains Gs

k as a subgraph.

Definition 2 (Structurally Balanced Graph Altafini, 2013). A signed
graph Gs

= (V , E, θ) is structurally balanced if it admits a
bipartition of the nodes, V = V 1

∪̇V 2, such that (i) for all (vi, vj) ∈

E ∩ (V q
× V q) with q = 1, 2, θ(vi, vj) = 1; and (ii) for all vi ∈ V q,

vj ∈ V r with (vi, vj) ∈ E, q, r ∈ {1, 2}, : q ≠ r , θ(vi, vj) = −1. �

Let D be the set of gauge transformations D = {Σ = Diag1:N
{σi}|σi ∈ {±1}}. We define the following notations

Hs
= Diag

1:N


1

|Nvi | + gu
i


(F − As

+ Gu),

Hu
= Diag

1:N


1

|Nvi | + gu
i


(F − Au

+ Gu).

(1)

Lemma 1 (Altafini, 2013; Zhang & Chen, 2014). Let Gs
= (V , E, θ)

be a signed graph which is structurally balanced with the bipartition
V = V 1

∪̇V 2, and Gu
= (V , E) be its unsigned equivalent. Then

Σ1A
sΣ1 = Au and Σ1HsΣ1 = Hu if and only if Σ1 = Diag1:N

{σi} ∈ D , where for all vi ∈ V q, vj ∈ V r with q, r ∈ {1, 2}, we have
σi = σj if and only if q = r. �

Lemma 2 (Lewis, Zhang, Hengster-Movric, & Das, 2014). Let a graph
G = (V , E) contain K maximal strongly connected subgraphs Gk =

(Vk, Ek), k = 1, . . . , K . One can reorder the nodes such that the
adjacent matrix A of G is lower block triangular and its mth diagonal
blocks is Ξm ∈ {Ak|1 ≤ k ≤ K}, where Ak is the adjacent matrix of
Gk. �

3. Bipartite and cooperative output synchronization problems

Consider a group of N + 1 linear heterogeneous agents consist-
ing ofN followers labeled as i = 1, . . . ,N and a leader labeled as 0:

ẋi = Aixi + Biui, (2)
yi = Cixi, zi = Dixi, i = 1, . . . ,N (3)
ẋ0 = A0x0, y0 = C0x0, (4)

where xi ∈ Rni , : yi ∈ Rp, ui ∈ Rmi and zi ∈ Rqi are the
state, the output, the control and themeasured output of the agent
i (i = 0, . . . ,N), respectively. We make the following assumption.

Assumption 1. The signed graph Gs
= (V , E, θ) associated with

the multi-agent system is structurally balanced.

Without loss of generality, let Σ1 = Diag1:N{σi} be the gauge
transformation introduced in Lemma 1, where v0 ∈ V 1, (∀vi ∈

V 1) σi = 1, and (∀vj ∈ V 2) σj = −1.

Problem 1 (Bipartite Output Synchronization (BOS) Problem). Con-
sider a group of N + 1 linear heterogeneous agents defined by (2)–
(4). Assume that the agents communicate yi’s, over a structurally
balanced signed graph Gs

= (V , E, θ). Design the static matrices
K1i ∈ Rmi×qi , K2i ∈ Rmi×nηi , Ri ∈ Rnηi×nηi , Si ∈ Rnηi×p for each
i = 1, . . . ,N , such that

ui = K1izi + K2iηi, η̇i = Riηi + Siδi, ηi ∈ Rnηi (5)

δi =
1

|Nvi | + gu
i


N
j=1

(auijyi − asijyj) + gu
i yi − g s

i y0


,

render limt→+∞ ebi(t) = yi(t) − σiy0(t) = 0. �

In this paper, we transform the BOS problem into another
problem called cooperative output synchronization problem,
which is defined below.
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