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a b s t r a c t

We study a multiperiod portfolio selection problem in which a single period mean-standard-deviation
criterion is used to construct a separable multiperiod selection criterion. Using this criterion, we obtain a
closed form optimal strategy which depends on selection schemes of investor’s risk preference. As a con-
sequence, we develop a multiperiod portfolio selection scheme. In doing so, we adapt a pseudo dynamic
programming principle from other existing results. The analysis is performed in themarket of risky assets
only, however, we allow both market transitions and intermediate cash injections and offtakes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Portfolio selection problem has been of a great interest by both
academics and practitioners. There are various selection criteria
available. Some examples include the classical mean–variance
(MV) criterion introduced by Markowitz (1952), the safety-first
criterion proposed by Roy (1952), and the criterion which targets a
particular wealth level used by Skaf and Boyd (2009). In this paper,
we choose a mean-standard-deviation (MSD) criterion which (in
the single period case) has the form:

Jx(u) = Ex

W u

− κ


Varx


W u


,

where W u denotes investor’s wealth at the end of the investment
horizon, which depends on investor’s initial wealth x, his invest-
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ment strategy u, and a parameter κ > 0 which characterizes in-
vestor’s risk tolerance. All terms will be defined in a more pre-
cise way later. There are several reasons to choose this criterion.
The most significant one is the fact that it provides a partial un-
derstanding on how to choose a dynamic portfolio for the class of
translation-invariant and positive-homogeneous (TIPH) risk mea-
sures. The TIPH risk measure class contains many interesting
examples such as thewell-knownValue at Risk (VaR), and the Con-
ditional Value at Risk (CVaR). In a single period portfolio selection
model, it has been shown (see for example Landsman & Makov,
2011) that if the asset returns follow a (joint) elliptical distribu-
tion, optimizing a risk measure from the TIPH class is equivalent to
optimizing the MSD criterion.

There has been extensive research in the past regarding single
period portfolio selection by using MSD criterion. For example,
Landsman (2008) found a closed form solution by using matrix
partitions. Owadally (2012) proposed two alternative ways in
which the obtained solutions are more efficient computationally.
The first approach is based on the relationship between optimizing
the MSD criterion and optimizing the MV criterion which is
close to a precommitment approach. For portfolio selection by
precommitment approach, we refer to Çakmak andÖzekici (2006);
Li and Ng (2000). The second approach utilizes the standard
Lagrange argument together with some facts from linear algebra.
One may note that both (Landsman, 2008; Owadally, 2012)
consider amarket of risky assets. Later on, a risk free asset is added
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to themodel in Landsman andMakov (2012), however only a trivial
solution is obtained (when a budget constraint only is imposed).

Just like in the second method given by Owadally (2012) we
follow a standard Lagrangemethod to solve the single period prob-
lem. However, the main interest of this paper, is to extend the sin-
gle period framework to a multiperiod model. In doing so, we note
that the MSD and the MV criterion face the same difficulty due to
the presence of the variance term in their formulation. The diffi-
culty is that we cannot apply the standard dynamic programming
principle (DPP). In recent years, it is quite popular to use the time
consistency concept to establish a pseudo DPP. This concept has
beenwidely applied in themultiperiod portfolio selection problem
with theMVcriterion.Wemention a few references here: Bensous-
san, Wong, Yam, and Yung (2014), Björk andMurgoci (2010) Chen,
Li, and Guo (2013) and Wu (2013) and for discrete time, and (Ben-
soussan et al., 2014; Björk, Murgoci, & Zhou, 2014) for continuous
time setting. There are different definitions of time consistency.
Here, we concentrate on the time consistency of optimal strat-
egy with respect to a multiperiod selection criterion. To formulate
a pseudo DPP, it has been argued that a rational investor should
choose his strategy consistently through time. In other words, the
investors only choose among strategieswhich they are going to fol-
low in the future (see Strotz, 1955–1956). Thus, in discrete time,
by utilizing this time consistency approach one can select an op-
timal strategy through a period-wise optimization and backward
recursion. A meaningful explanation is given through a game the-
ory point of view, and such a strategy has been called an equilib-
rium control (henceforth referred to as a weakly time consistent
optimal strategy). It inherits the equilibrium concept that arises in
game theory. We refer to Bensoussan et al. (2014), Björk and Mur-
goci (2010) andWu (2013) and the references therein for more de-
tails.With a rather strong formof time consistency as proposed, for
example by Kang and Filar (2006), an extra property of a time con-
sistent optimal strategy is required. This property states that any
sub-strategy of a weakly time consistent optimal strategy is also
optimal for the corresponding subsequent periods. This is essen-
tially satisfied for an optimal strategy that can be obtained through
the standard DPP. Inspired by the work of Chen et al. (2013) and
Kovacevic and Pflug (2009) constructed a multiperiod separable
selection criterion. With respect to this criterion, they proved that
the optimal strategy obtained through the pseudo DPP satisfies the
extra property of strong time consistency. They obtained a closed
form optimal strategy with a multiperiod separable selection cri-
terion of MV type. Later on, their work has been extended by Chen,
Li, and Zhao (2014) to allow market transitions.

To the authors’ best knowledge, the multiperiod portfolio se-
lection problem in which a MSD type criterion is used as a selec-
tion criterion is only briefly mentioned in Kronborg and Steffensen
(2015). However, the authors consider a model with two assets
only, where one of the assets is supposed to be risk free. Within
their setting, a trivial result (a special case of Landsman & Makov,
2012) only is obtained. In essence, the outcome is that if the re-
ward is large enough, it would be advisable to invest as much as
possible in the risky asset, whereas when the reward is too lit-
tle in comparison to the investor’s risk tolerance, the strategy is
to invest in the risk free asset only. A similar result is obtained in
the corresponding continuous time problem (see Kronborg & Stef-
fensen, 2015; Kryger & Steffensen, 2010). Our contribution in this
paper is to extend the single period model to a multiperiod selec-
tion scheme. We take the single period MSD criterion and formu-
late a separable multiperiod selection criteria of MSD type (similar
to Chen et al., 2013 for the MV case). By applying the aforemen-
tioned pseudo DPP, we obtain a closed form optimal strategy. The
analysis is performed in a market of risky assets only. However,
we allow for market transitions, and also for intermediate cash in-
jections and offtakes. Thus, the wealth process of the investor is

no longer self-financing in our setting. As far as we are aware, for
multiperiod portfolio selection problem, the only work in which
intermediate cash injections and offtakes are allowed and closed
form solution is obtained, is by Wu and Li (2012). However unlike
our work, the authors consider the multiperiod MV criterion, and
follow a precommitment approach.

The paper is organized in the following way. In Section 2, we
set up our model. In Section 3, we derive the optimal strategy,
obtain the multiperiod portfolio selection scheme, and compute
the optimal conditional expectation and conditional variance of
the terminal wealth. Numerical illustrations and comparisons
are performed in Section 4. Finally, we conclude the paper in
Section 5. To prepare for our work, we introduce some notations
and conventions.Weuse a bold letter to distinguish a vector v ∈ Rd

from a scalar v ∈ R. All vectors are column vectors. Moreover,

• for anymatrix B, BT denotes its transpose, B̄(i) denotes the sum
of the elements of its ith row; if B is square, Bm denotes itsmth
power, where m ≥ 0, and B0

= I (identity matrix);
• for any vector v, we denote by v i its ith component, and by

diag(v) a diagonal matrix whose diagonal elements diag(v)ii =

v i for all i;
• for any matrix B, and a vector v, we define Bv as the matrix

product of B and diag(v);
• for any sequence of matrices (Bn)n>0, and m < l, we putm

n=ℓ Bn = 0, and
m

n=ℓ Bn = I .

2. Problem formulation

2.1. The market and the investor

Consider a market which has a finite number of different
states such as ‘‘Normal’’, ‘‘Bull’’ and ‘‘Bear’’. From time to time the
market may shift from one state to another. The transitions of
the market are captured by a discrete time homogeneous Markov
Chain {θn, n ≥ 0}, with a state space S = {1, . . . , k}, and a
transition matrix Q = (qij)k×k. There are d > 1 risky assets in
themarketwith random return rates r1n , . . . , r

d
n evolving over time

interval [0,N]. The vector process of return rates (r1n , . . . , r
d
n )

T will
be denoted by rn whose dynamics is given by an equation

rn+1(θn) = mn(θn)+ sn(θn)ϵn+1 ∈ Rd, (1)

(see for example, Costa and Araujo (2008), for this commonly
used model). The process (ϵn)n>0 is a sequence of independent
identically distributed (i.i.d) d-dimensional zero mean random
vectors, with covariance matrix I . The functions mn : S → Rd and
sn : S → Rd×d are deterministic for each n = 0, . . . ,N−1. Inwhat
follows it will be sometimes convenient to use the notation rn (θn)
for rn. Then, for a given market state θn = j, the ith component
r in+1(j) of rn+1(j) represents the return of the ith risky asset over
time period [n, n + 1]. Thus, for every one dollar, we obtain

Rn+1(θn) = 1 + rn+1(θn), (2)

where 1 ∈ Rd is a vector of ones. An investor who has a finite
investment horizon [0,N], chooses a strategy at time 0, and adjusts
his strategy at times n = 1, . . . ,N − 1. We denote the strategy of
the investor as

u = (u0(θ0), . . . , uN−1(θN−1))
T , (3)

where each un : S → U is a deterministic function and

U = {u ∈ Rd
: 1Tu = 1}. (4)

For any given market state θn = j, the ith component ui
n(j) ∈ R

represents the proportions of wealth allocated by the investor to
the ith asset. The set U0 of all such strategies will be interpreted
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