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a b s t r a c t

We address the optimal dynamic formation problem in mobile leader–follower networks where an
optimal formation is generated to maximize a given objective function while continuously preserving
connectivity.We show that in a convexmission space, the connectivity constraints can be satisfied by any
feasible solution to a mixed integer nonlinear optimization problem. For the class of optimal formation
problems where the objective is to maximize coverage, we show that the optimal formation is a tree
which can be efficiently constructedwithout solving aMINLP. In amission space constrained by obstacles,
we separate the formation process into intervals with no obstacles detected and intervals where one or
more obstacles are detected. In the latter case, we propose a minimum-effort reconfiguration approach
for the formation which still optimizes the objective function while avoiding the obstacles and ensuring
connectivity. We include simulation results illustrating this dynamic formation process.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The multi-agent system framework consists of a team of
autonomous agents cooperating to carry out complex tasks within
a given environment that is potentially highly dynamic, hazardous,
and even adversarial. The overall objective of the system may
be time-varying and combines exploration, data collection, and
tracking to define a ‘‘mission’’, see Cao, Yu, Ren, and Chen (2013),
Cassandras and Li (2005), Choi, Oh, and Horowitz (2009) and
Shamma (2008). In many cases, mobile agents are required to
establish and maintain a certain spatial configuration, leading to a
variety of formation controlproblems. These problems are generally
approached in twoways: in the leader–follower setting, an agent is
designated as a team leader moving on some given trajectory with
the remaining agents tracking this trajectory while maintaining
the formation; in the leaderless setting the formation must be
maintained without any such benefit. Examples of formation
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control problems may be found in Desai, Kumar, and Ostrowski
(1999), Ji and Egerstedt (2007), Wang and Xin (2013), Yamaguchi
and Arai (1994) and references therein. In robotics, this is a well-
studied problem; for instance in Yamaguchi and Arai (1994), a
desired shape for a networked strongly connected group of robots
is achieved by designing a quadratic spread potential field on a
relative distance space. In Desai et al. (1999), a leader and several
followers move in an area with obstacles which necessitate the
transition from an initial formation shape to a desired new shape;
however, the actual choice of formations for a particular mission
is not addressed in Desai et al. (1999), an issue which is central
to our approach in this paper. In Ji and Egerstedt (2007) the
authors consider the problem of preserving connectivity when the
nodes have limited sensing and communication ranges; this is
accomplished through a control law based on the gradient of an
edge-tension function. More recently, inWang and Xin (2013), the
goal is to integrate formation control with trajectory tracking and
obstacle avoidance using an optimal control framework.

In this paper, we take a different viewpoint of formations. Since
agent teams are typically assigned a mission, there is an objective
(or cost) function associated with the team’s operation which
depends on the spatial configuration (formation) of the team.
Therefore, we view a formation as the result of an optimization
problem which the agent team solves in either centralized
or distributed manner. We adopt a leader–follower approach,
whereby the leader moves according to a trajectory that only
he/she controls. During the mission, the formation is preserved or
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must adapt if the mission (hence the objective function) changes
or if the composition of the team is altered (by additions or
subtractions of agents) or if the team encounters obstacles which
must be avoided. In the latter case in particular, we expect that the
team adapts to a new formation which still seeks to optimize an
objective function so as to continue the team’smission by attaining
the best possible performance. The problem is complicated by
the fact that such adaptation must take place in real time. Thus,
if the optimization problem determining the optimal formation
is computationally demanding, we must seek a fast and efficient
control approach which yields possibly sub-optimal formations,
but guarantees that the initial connectivity attained is preserved.
Obviously, once obstacles are cleared, the team is expected to
return to its nominal optimal formation.

Although the optimal dynamic formation control framework
proposed here is not limited by the choice of tasks assigned to
the team, we will focus on the dynamic coverage control prob-
lem because its static version is well studied and amenable to
efficient distributed optimization methods; see Breitenmoser,
Schwager, Metzger, Siegwart, and Rus (2010), Caicedo-Nuez and
Zefran (2008a); Caicedo-Nunez and Zefran (2008b), Cassandras
and Li (2005), Cortes, Martinez, Karatas, and Bullo (2004) and
Zhong and Cassandras (2011), while also presenting the challenge
of being generally non-convex and sensitive to the agent locations
during the execution of amission. The local optimality issue, which
depends on the choice of objective function, is addressed in Gus-
rialdi, Dirza, Hatanaka, and Fujita (2013), Schwager, Bullo, Skelly,
and Rus (2008) and Sun, Cassandras, and Gokbayrak (2014), while
the problem of connectivity preservation in view of limited com-
munication ranges is considered in Ji and Egerstedt (2007) and
Zhong and Cassandras (2011).

The contribution of this paper is to formulate an optimiza-
tion problem which jointly seeks to position agents in a two-
dimensional mission space so as to optimize a given objective
function while at the same time ensuring that the leader and
remaining agents maintain a connected graph dictated by mini-
mumdistances between agents, thus resulting in an optimal forma-
tion. The minimum distances may capture limited communication
ranges as well as constraints such as maintaining desired relative
proximity between agents.We show that the solution to this prob-
lem guarantees such connectivity. For the class of optimal cover-
age control problems, we show that an optimal formation is a tree
whose construction is much more computationally efficient than
that of a general connected graph. The formation becomes dynamic
as soon as the leader starts moving along a trajectory which may
either be known to all agents in advance or determined only by
the leader. Thus, it is the team’s responsibility to maintain an op-
timal formation. We show that this is relatively simple as long as
no obstacles are encountered. When one or more obstacles are en-
countered (i.e., they come within the sensing range of one or more
agents), then we propose a scheme for adapting with minimal ef-
fort to a sequence of new formations which maintain connectivity
while still seeking to optimize the original team objective.

The paper is organized as follows. In Section 2, we formulate a
general optimal formation control problem and, for a convex feasi-
ble space, derive a mixed integer nonlinear optimization problem
whose solution is shown to ensure connectivity while maintaining
an optimal formation. In Section 3, we focus on optimal coverage
control problems, prove that a tree is an optimal formation, and
propose an algorithm to construct such a tree in a convex mission
space. In Section 4, we address the optimal formation problem in a
mission space with obstacles. We propose an algorithm to first ob-
tain a connected formation and then optimize it whilemaintaining
connectivity. Simulation results are included in Section 5.

2. Optimal formation problem

Consider a set of N + 1 agents with a leader labeled 0 and N
followers labeled 1 through N in a mission space Ω ∈ R2. Agent
i is located at si(t) ∈ R2 and let s(t) = (s0(t), . . . , sN(t)) be
the full agent location vector at t . The leader follows a predefined
trajectory s0(t) over t ∈ [0, T ] which is generally not known in
advance by the remaining agents. We model the agent team as a
directed graph G (s) = (N , E , s), where N = {0, 1, . . . ,N} is the
set of agent indices and let NF = {1, . . . ,N} ⊂ N be the set of
follower indices. In this model, the set of edges E = {(i, j) : i, j ∈

N } contains all possible agent pairs for which constraints may be
imposed.

In performing a mission, let H(s(t)) be an objective function
dependent on the agent locations s(t). If the locations are
unconstrained, the problem is posed as maxs(t)∈Ω H(s(t)) subject
to dynamics that may characterize the motion of each agent. If t
is fixed, then this is a nonlinear parametric optimization problem
over the mission space Ω (Zhong & Cassandras, 2011). If, in
addition, agents are required to satisfy some constraints relative
to each other’s position, then a formation is defined as a graph that
satisfies these constraints. We then introduce a Boolean variable
c(si, sj) to indicate whether two agents satisfy these constraints:

c(si, sj) =


1 all constraints are satisfied
0 otherwise (1)

and if c(si, sj) = 1 we say that agents i and j are connected. A loop-
free path from the leader to agent i, πi = {0, . . . , a, b, . . . , i}, is
defined as an ordered set where neighboring agents are connected
such that c(sa, sb) = 1. Let Πi be the set of all possible paths from i
connected to the leader. The graph G (s) is connected if Πi ≠ ∅ for
all i ∈ NF . We can now formulate an optimal formation problem
with connectivity preservation as follows, for any fixed t ∈ [0, T ]:

max
s(t)∈Ω

H(s(t))

s.t. si(t) ∈ F ⊆ Ω, i ∈ NF
s0(t) is given

G (s(t)) is connected.

(2)

For the sake of generality, we impose the constraint si(t) ∈ F ⊆ Ω

for all follower agents to capture the possibility that a formation
is constrained. The feasible space F can be convex (e.g., followers
may be required to be located on one side of the leader relative to
a line in Ω that goes through s0(t)) or non-convex (e.g., followers
may be forbidden to enter polygonal regions, possibly physical
obstacles, and F is the set Ω excluding all interior points of these
regions). The solution to this problem is an optimal formation at
time t and is denoted by G ∗(s(t)). Given a time interval [t1, t2],
the formation is maintained in [t1, t2] if si(t) − si(t1) = s0(t) −

s0(t1) holds for all t ∈ [t1, t2], i ∈ NF ; otherwise, it is a
new formation. Fig. 1 shows an example of optimal dynamic
formation control in a mission space with obstacles. Clearly, this
is a challenging problem. To begin with, the last constraint in (2) is
imprecise and may be different in a convex or non-convex feasible
space. In addition, the computational complexity of obtaining a
solution may be manageable in determining an initial formation
but becomes infeasible if a new formation G ∗(s(t)) is required
during the real-time execution of a mission. We first propose a
general approach to solve this problem in a convex feasible space
for arbitrary H(s(t)). In the next section, we will limit ourselves to
the class of optimal coverage problems in both convex and non-
convex feasible spaces and show how to take advantage of the
specific structure of H(s(t)) in such cases.

In a convex feasible space, the simplest connection constraints
are of the form dij(t) ≡ ∥si(t) − sj(t)∥ ≤ Cij for some pair
(i, j), i, j ∈ {0, 1, . . . ,N}, where Cij > 0 is a given scalar. This
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