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a b s t r a c t

In this paper, we study a varianceminimization problem in an infinite stage discrete timeMarkov decision
process (MDP), regardless of the mean performance. For the Markov chain under the variance criterion,
since the value of the cost function at the current stage will be affected by future actions, this problem
is not a standard MDP and the traditional MDP theory is not applicable. In this paper, we convert the
variance minimization problem into a standard MDP by introducing a concept called pseudo variance.
Thenwederive a variance difference formula that quantifies the difference of variances ofMarkov systems
under any two policies. With the difference formula, the correlation of the variance cost function at
different stages can be decoupled through a nonnegative term. A necessary condition of the optimal
policy is obtained. It is also proved that the optimal policy with the minimal variance can be found in
the deterministic policy space. Furthermore, we propose an efficient iterative algorithm to reduce the
variance of Markov systems. We prove that this algorithm can converge to a local optimum. Finally, a
numerical experiment is conducted to demonstrate the efficiency of our algorithm compared with the
gradient-based method widely adopted in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are widely used to model
and analyze the performance optimization in stochastic dynamic
systems (Chang, Fu, Hu, & Marcus, 2007; Feinberg & Schwartz,
2002; Puterman, 1994). In the literature on MDPs, many studies
focus on the performance optimization under the long-run av-
erage or discounted performance criterion. Much less attention
has been paid to the variance criterion. However, variance is an
important performance metric of stochastic systems and it re-
flects risk-related factors. For example, in financial engineering,
the risk-averse investors optimize their portfolios to minimize
the risk of their investments while keeping an acceptable return,
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which is called mean–variance optimization of portfolio manage-
ment (Markowitz, 1952; Zhou & Yin, 2004). In the process control
of plants, the minimum variance control is used to control the re-
action process steadily and reduce the quality variation of products
(Harrison & Qin, 2009; Huang, 2002).

The mean–variance optimization always considers the mean
and variance simultaneously. In the field of machine learning, re-
search is conducted to develop optimization algorithms that min-
imize the variance while keeping the mean performance above a
certain level, or maximize the mean performance while keeping
the variance under a certain level, or take the variance as a penalty
factor and maximize the combined objective function. Policy gra-
dient algorithms are proposed to find a local optimum (Prashantha
& Ghavamzadeh, 2013; Tamar, Castro, & Mannor, 2012). However,
these studies suffer from the intrinsic deficiencies of gradient-
based methods, such as the slow convergence speed, the difficulty
of selecting step-size, the sensitivity to the initial point, and the
possibility of being trapped into a local optimum.Mannor and Tsit-
siklis (2013) further study the algorithmic complexity of a special
form of mean–variance optimization in finite horizon and prove
that such problem is NP-hard in some cases. In the field of MDPs,
studies usually focus on the variance minimization within an opti-
mal policy set inwhich themeanperformance already achieves op-
timum (Cao & Zhang, 2008; Guo & Song, 2009; Hernandez-Lerma,
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Vega-Amaya, & Carrasco, 1999). When the average or discounted
performance is already optimal, the variance criterion can be
transformed to an equivalent average or discounted criterion (Guo,
Ye, & Yin, 2012; Huang & Chen, 2012) and the traditional MDP ap-
proaches, such as the policy iteration, are still applicable. However,
it is not clear how to develop a policy iteration type algorithm to
minimize the variancewhen themean performance is not optimal.

In this paper, we aim to study the variance minimization
problem in a discrete time MDP, regardless of the mean
performance. Different from the mean–variance optimization
studied in the literature, we focus only on the variance criterion.
This problem is of both theoretical and engineering significance.
From the theoretical viewpoint, our work can contribute to a
more systematic study of MDP theory under various criteria,
besides the widely used average and discounted criterion. From
the application viewpoint, the variance minimization problem has
practical background in engineering systems. For example, in a
smart grid integrated with wind farms, a lot of wind electricity
is abandoned because of its large variation (Ummels, Gibescu,
Pelgrum, Kling, & Brand, 2007). Energy storage systems can be used
to reduce the variation of wind electricity. It is of importance to
optimize the scheduling policy such that the variation of electricity
output from the storage system to the smart grid is minimized,
while the wind abandonment is avoided. This problem can be
modeled as a typical variance minimization problem.

The difficulty of the variance minimization problem is mainly
caused by the quadratic form of the variance. We observe that the
cost function under the variance criterion is f (i, a) = (r(i, a) −
η)2, where r(i, a) is the system reward at the current stage with
state i and action a, and η is the mean performance. A standard
MDP requires that both the cost function and the state transition
probability should beMarkovian. The cost should be an instant cost
and its value at the current stage should not be affected by future
stages (see page 20 in the book of Puterman, 1994). However, in
the variance minimization problem, the cost function f (i, a) will
be affected by future actions. This is because r(i′, a′) at future
stages will affect the value of η, consequently affect the value of
(r(i, a) − η)2 at the current stage. Therefore, the values of f (i, a)
at different stages are coupled and this variance minimization
problem is not a standard MDP. The Bellman optimality equation
that is critical for dynamic programming does not hold for this
problem. The traditional MDP approaches, such as the policy
iteration or the value iteration, are not applicable to this problem.
The difficulty of this problem is also pointed out by Sobel (1982)
that a general optimization problem considering variance metrics
is not amenable to the policy iteration algorithm.

In this paper, we define a quantity called pseudo variance
fλ(i, a) = (r(i, a) − λ)2, where λ is a given constant. Obviously,
the value of the pseudo variance at the current stage will not be
affected by future actions and the pseudo variance minimization
problem is a standardMDP.We prove that the policy improvement
for the pseudo variance also reduces the variance of Markov
systems. Therefore, the original variance minimization problem is
converted into a standardMDP ofminimizing the pseudo variance.
Then we derive a variance difference formula that clearly describes
the relation between the variance and the policy adopted. This
formula can decouple the correlation of variances at different
stages, through a nonnegative term (η′ − η)2. It gives a new
direction to study the varianceminimization problem ofMDP from
the sensitivity viewpoint. With the variance difference formula,
we derive a necessary condition for the optimal policy under the
variance criterion. We also prove that the optimal policy with the
minimal variance can be found in the deterministic policy space,
which is not trivial since this problem does not fit a standard MDP
formulation. For the variance criterion with mean performance
as constraint, the optimal policy cannot be always achieved in

the deterministic policy space (Puterman, 1994). An iterative
algorithm similar to policy iteration is further developed to
efficiently reduce the variance of Markov systems. This algorithm
is proved to converge to a local optimum. Although the policy
gradient approacheswidely adopted in the literature also converge
to a local optimum, our policy iteration algorithm has a much
faster convergence speed, which is demonstrated in numerical
experiments. To the best of our knowledge, this is the first work
that provides a policy iteration type algorithm to minimize the
variance of Markov systems. In the literature, the previous works
either study the policy iteration to minimize the variance after
the average or discounted performance already achieves optimum
or study the policy gradient algorithm to approach to the local
minimum of variance. Our approach provides a promising way
to directly minimize the variance of Markov systems, regardless
of the mean performance. Compared with our conference paper
(Xia, 2014), this journal paper makes substantial contributions,
especially on the pseudo variance and related proofs.

The remainder of the paper is organized as follows. In Section 2,
we give amathematical formulation for the varianceminimization
problem. In Section 3, we convert this problem into a standard
MDP of minimizing the pseudo variance. The variance difference
formula is further derived. Some optimality properties are also
obtained. A policy iteration type algorithm is then developed to
efficiently reduce the variance of Markov systems. In Section 4, we
conduct numerical experiments to demonstrate the efficiency of
our approach. Finally, we conclude this paper in Section 5.

2. Problem formulation

Consider a discrete time Markov chain X := {Xt , t = 0, 1, . . .},
where Xt is the system state at time epoch t . The state space S is as-
sumed finite and we denote it as S := {1, 2, . . . , S}, where S is the
size of the state space.When the system is at state i, we can choose
an action a from the action space A(i), i ∈ S. For simplicity, we
assume that the action spaces at different states are identical, i.e.,
A(i) = A,∀i ∈ S.We assumeA is finite andA := {a1, a2, . . . , aA},
where A is the size of action spaceA. After an action a is adopted at
state i, the system state will transit to state j at the next time epoch
with a transition probability pa(i, j), i, j ∈ S and a ∈ A. Mean-
while, the system will obtain an instant reward denoted as r(i, a).
All the transition probabilities of the Markov chain compose an S-
by-S matrix denoted as P . For notation simplicity, wemay also use
r(i) to replace r(i, a) when the action selection rule is determined.
We further denote the reward function r as an S-dimensional col-
umn vector composed by element r(i), i ∈ S. The steady state dis-
tribution of the Markov chain is denoted as an S-dimensional row
vector π := (π(1), π(2), . . . , π(S)), where π(i) is the probability
of the system staying at state i, i ∈ S. Obviously, we have πP = π,
P1 = 1, and π1 = 1, where 1 is an S-dimensional column vector
with all elements being 1. The long-run average performance of the
Markov chain is defined as below.

η := πr = lim
T→∞

1
T

E


T−1
t=0

r(Xt)


, (1)

where we assume that the Markov chain is ergodic and η is inde-
pendent of the initial state X0.

According to the definition of the variance in a stochastic
process, we define the steady state variance of an ergodic Markov
chain as below (Chung, 1994; Sobel, 1994).

ησ s := lim
T→∞

1
T

E


T−1
t=0

(r(Xt)− η)2


. (2)
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