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a b s t r a c t

We study incremental stability and convergence of switched (bimodal) Filippov systems via contraction
analysis. In particular, by using results on regularization of switched dynamical systems we derive
sufficient conditions for convergence of any two trajectories of the Filippov system between each other
within some region of interest. We then apply these conditions to the study of different classes of Filippov
systems including piecewise smooth (PWS) systems, piecewise affine (PWA) systems and relay feedback
systems.We show that contrary to previous approaches, the our conditions allow the system to be studied
in metrics other than the Euclidean norm. The theoretical results are illustrated by numerical simulations
on a set of representative examples that confirm their effectiveness and ease of application.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Incremental stability has been established as a powerful tool
to prove convergence in nonlinear dynamical systems (Angeli,
2002). It characterizes asymptotic convergence of trajectories with
respect to one another rather than towards some attractor known
a priori. Several approaches to derive sufficient conditions for a
system to be incrementally stable have been presented in the
literature (Angeli, 2002; Forni & Sepulchre, 2014; Lohmiller &
Slotine, 1998; Pavlov, van de Wouw, & Nijmeijer, 2006; Russo, di
Bernardo, & Sontag, 2010).

A particularly interesting and effective approach to obtain
sufficient conditions for incremental stability of nonlinear systems
comes fromcontraction theory (Aminzare&Sontag, 2014; Jouffroy,
2005; Lohmiller & Slotine, 1998). A nonlinear system is said to be
contracting if initial conditions or temporary state perturbations
are forgotten exponentially fast, implying convergence of system
trajectories towards each other and consequently towards a
steady-state solution which is determined only by the input (the
entrainment property, e.g. Russo et al., 2010). A vector field can be
shown to be contracting over a given K -reachable set by checking
the uniform negativity of some matrix measure µ of its Jacobian
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matrix in that set (Russo et al., 2010). Classical contraction analysis
requires the system vector field to be continuously differentiable.

In this paper, we consider an important class of non-
differentiable vector fields known as piecewise smooth (PWS)
systems (Filippov, 1988). A PWS system consists of a finite set of
ordinary differential equations

ẋ = fi(x), x ∈ Si ⊂ Rn (1)

where the smooth vector fields fi, defined on disjoint open regions
Si, are smoothly extendable to the closure of Si. The regions Si are
separated by a setΣ of codimension one called the switchingmani-
fold, which consists of finitelymany smoothmanifolds intersecting
transversely. The union ofΣ and all Si covers thewhole state space
U ⊆ Rn.

Piecewise smooth systems are of great significance in applica-
tions, ranging from problems in mechanics (friction, impact) and
biology (genetic regulatory networks) to variable structure sys-
tems in control engineering (sliding mode control Utkin, 1992)—
for an overview see di Bernardo, Budd, Champneys, and Kowalczyk
(2008).

The theoretical study of PWS systems is important. Firstly, the
classical notion of solution is challenged in at least two distinct
ways. When the normal components of the vector fields either
side of Σ are in the same direction, the gradient of a trajectory is
discontinuous, leading to Carathéodory solutions (Filippov, 1988).
In this case, the dynamics is described as crossing or sewing. But
when the normal components of the vector fields on either side
of Σ are in the opposite direction, a vector field on Σ needs
to be defined. The precise choice is not unique and depends on
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the nature of the problem under consideration. One possibility is
the use of differential inclusions. Another choice is to adopt the
Filippov convention (Filippov, 1988), where a sliding vector field
f s is defined onΣ . In this case, the dynamics is described as sliding.

Several results have been presented in the literature to
extend contraction analysis to non-differentiable vector fields.
An extension to piecewise smooth continuous (PWSC) systems
was outlined in Lohmiller and Slotine (2000) and formalized in
di Bernardo, Liuzza, and Russo (2014). Contracting hybrid systems
were analyzed in Lohmiller and Slotine (2000) while the stability
analysis of hybrid limit cycles using contraction was presented in
Tang and Manchester (2014). An extension of contraction theory,
related to the concept of weak contraction (Sontag, Margaliot,
& Tuller, 2015), to characterize incremental stability of sliding
mode solutions of planar Filippov systems was first presented
in di Bernardo and Liuzza (2013) and later extended to n-
dimensional Filippov systems in di Bernardo and Fiore (2014).
Finally, incremental stability properties of piecewise affine (PWA)
systems were discussed in Pavlov, Pogromsky, van de Wouw,
and Nijmeijer (2007) in terms of convergence, a stability property
related to contraction theory (Pavlov, Pogromsky, van deWouw, &
Nijmeijer, 2004).

In this paper, we take a different approach to the study of
contraction in n-dimensional Filippov systems than the one taken
in di Bernardo and Fiore (2014) and di Bernardo and Liuzza (2013).
In those papers, the sliding vector field f s was assumed to be
defined everywhere and then the contraction properties of its
projection onto the switching manifold was considered (together
with a suitable change of coordinates). In the current paper, we
adopt a new generic approach which directly uses the vector fields
fi and does not need the explicit computation of the sliding vector
field f s. Our method has a simple geometric meaning and, unlike
other methods, can also be applied to nonlinear PWS systems.

Instead of directly analyzing the Filippov system, we first
consider a regularized version; one where the switching manifold
Σ has been replaced by a boundary layer of width 2ε. We choose
the regularization method of Sotomayor and Teixeira (1996). We
then apply standard contraction theory results to this new system,
before taking the limit ε → 0 in order to recover results that are
valid for our Filippov system.

2. Mathematical preliminaries and background

2.1. Matrix measures

Given a real matrix A ∈ Rn×n and a norm | · | with its induced
matrix norm ∥ · ∥, the associated matrix measure (also called
logarithmic norm Dahlquist, 1958; Lozinskii, 1958; Ström, 1975)
is the function µ : Rn×n

→ R defined as

µ(A) := lim
h→0+

∥I + hA∥ − 1
h

where I denotes the identity matrix. The following matrix
measures associated to the p-norm for p = 1, 2,∞ are often used

µ1(A) = max
j


ajj +


i≠j

|aij|



µ2(A) = λmax


A + AT

2


µ∞(A) = max

i


aii +


j≠i

|aij|


.

The matrix measure µ has the following useful properties (Desoer
& Haneda, 1972; Vidyasagar, 2002):

(1) µ(I) = 1, µ(−I) = −1.
(2) If A = ∅, where ∅ denotes the zero matrix, then µ(A) = 0.
(3) −∥A∥ ≤ −µ(−A) ≤ Re λi(A) ≤ µ(A) ≤ ∥A∥ for all i =

1, 2, . . . , n, where Re λi(A) denotes the real part of the eigen-
value λi(A) of A.

(4) µ(c A) = c µ(A) for all c ≥ 0 (positive homogeneity).
(5) µ(A + B) ≤ µ(A)+ µ(B) (subadditivity).
(6) Given a constant nonsingular matrix Q , the matrix measure

µQ ,i induced by the weighted vector norm |x|Q ,i = |Qx|i is
equal to µi(QAQ−1).

The following theorem can be proved (Aminzare & Sontag,
2014; Vidyasagar, 1978).

Theorem 1. There exists a positive definite matrix P such that PA +

ATP < 0 if and only if µQ ,2(A) < 0, with Q = P1/2.

We now present results on the properties of matrix measures of
rank-1matrices, since wewill need these in the sequel. We believe
that Lemma 1 is an original result. For any two vectors x, y ∈ Rn,
x, y ≠ 0, the matrix A = xyT has always rank equal to 1. This can
be easily proved observing that xyT = [y1x y2x . . . ynx].

Proposition 1. For any two vectors x, y ∈ Rn, x, y ≠ 0 and for any
norm we have that µ(xyT ) ≥ 0.

Proof. The proof follows from property 3 of matrix measures
as listed above, that is, for any matrix and any norm µ(A) ≥

Re λi(A), ∀i, where Re λi(A) denotes the real part of the
eigenvalues λi(A) of A. Therefore, since a rank-1 matrix has n − 1
zero eigenvalues its measure cannot be less than zero.

The following important result holds for the measure of rank-1
matrices induced by Euclidean norms.

Lemma 1. Consider the Euclidean norm | · |Q ,2, with Q = P1/2 and
P = PT > 0. For any two vectors x, y ∈ Rn, x, y ≠ 0, the following
result holds

µQ ,2(xyT ) = 0 if and only if Px = −y,

otherwise µQ ,2(xyT ) > 0.

Proof. Firstly we prove that µ2(xyT ) = 0 if and only if x and y are
antiparallel. Indeed, from the definition of µ2, µ2(xyT ) is equal to
the maximum eigenvalue of the symmetric part As ≡ (A + AT )/2
of the matrix A = xyT . The characteristic polynomial pλ(As) of As is
(Bernstein, 2009, Fact 4.9.16)

pλ(As) = λn−2

λ2 − xTyλ−

1
4


xT xyTy − xTyyT x


= λn−2


λ2 − xTyλ−

1
4


|x|22|y|

2
2 − (xTy)2


.

This polynomial has always n − 2 zero roots and (in general) two
further real roots. It can be easily seen from Descartes’ rule that
their signs must be opposite. Therefore, the only possibility for
them to be nonpositive is that one must be zero while the other
is negative. Using again Descartes’ rule, this obviously happens if
and only if x and y are antiparallel.

Now, assume that µQ ,2(xyT ) = 0 then, using property 6
of matrix measures, we have µQ ,2(xyT ) = µ2


QxyTQ−1


=

µ2

Qx(Q−1y)T


= 0, and, from the result proved above, Qx and

Q−1y must be antiparallel, i.e. Qx = −Q−1y, or equivalently
Px = −y.

To prove sufficiency, suppose that Px = −y, then Qx = −Q−1y
and therefore, using again the result above, we have µQ ,2(xyT ) =

µ2(QxyTQ−1) = µ2(−Qx(Qx)T ) = 0.

Note that when x or y (or both) are equal to 0 then by property 2 of
matrix measures µ(xyT ) = 0.
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