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a b s t r a c t

This paper presents the estimation problem of Markovian jump linear systems (MJLSs) with generalized
unknown disturbances (GUDs). There exist multiple uncertainties including Markovian switching
parameters and GUDs, along with traditional random noises. Here, the state transition of MJLS is treated
as the jump from one vertex to another on a fixed polyhedron whose vertex represents a mode. Since the
transition is dependent on stochastic Markovian switching parameter, a more general polytopic system
with stochastic weights is considered and the corresponding upper-bound filter (UBF) is derived. Then,
the MJLS with GUDs is transformed into a special case of the considered polytopic system by letting the
corresponding stochastic weight as the binary value constructed byMarkovian switching parameters and
hence the recursive UBF is obtained. The parameters in the derived UBF are further optimized in pursuit
of the minimum upper bounds of estimation error covariances. The simulation via maneuvering target
tracking shows the effectiveness of the proposed filter.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Markovian jump linear systems (MJLSs) have wide and
successful applications in many fields, for example, target tracking
(Boers & Driessen, 2005; Li & Jilkov, 2005), fault-tolerant control
(Li, Gao, Shi, & Zhao, 2014; Liu, Ho, & Shi, 2015), process control
(Xiong, Lam, Gao, & Ho, 2005), and signal processing (Johnston &
Krishnamurthy, 2001). In general, the estimation issue concerning
MJLSs is in the framework of the multiple model (MM) and
there are three generations of MM estimators with the last two
generations for the MJLSs (Lan, Li, & Mu, 2011; Li & Jilkov, 2005).
However, all these MM methods need Gaussian assumptions on
both process noises and measurement noises. In some situations,
such Gaussian assumption does not always hold. For example, in
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maneuvering target tracking, the significant attitude changes bring
out significant variations of radar reflections, leading to high-tailed
and non-Gaussian (also called ‘‘glint’’) measurement noises (Bilik
& Tabrikian, 2010). Meanwhile, the recursive calculation of the
first two moments of the interested vector sometimes is enough
in practice. For instance, target tracking focuses on estimating
the state including position and velocity (the first moment) and
covariance (the second moment). In other words, calculating the
conditional state distribution given measurements is not only too
computation-intensive but alsomaynot benecessary in the viewof
desirable balance between estimation accuracy and computation
burden. Thus, it motivates the development of linear minimum-
mean-square-error (LMMSE) estimator for the MJLS.

In Costa (1994), the LMMSE estimator for the MJLS was derived
from geometric augment based on directly estimating xk1{Θk=i}
instead of the state xk, where 1{Θk=i} is an indicator being 1 if
Θk = i or 0 otherwise; Θk is the state of Markov chain. And its
error covariance can converge to the unique positive-semidefinite
solution of anNn-dimensional algebraic Riccati equation under the
conditions of mean square stability of the MJLS and the ergodicity
of the associated Markov chain, where n is the dimension of
the state vector and N is the number of states of the Markov
chain. Furthermore, a time-invariant (a fixed-gain matrix) LMMSE
estimator was derived for MJLSs (Costa, 2002). By the fact
that roundoff errors in solving the above Riccati equation may
cause the loss of the symmetry and positive-semidefinition, an
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array implementation with the better numerical robustness was
developed (Terra, Ishihara, & Junior, 2007). Recently, the LMMSE
estimations of MJLSs are also extended to the cases of stochastic
coefficient matrices (Yang, Liang, Pan, Qin, & Yang, 2014) and
randomly delayed measurements (Yang, Liang, Yang, Qin, & Pan,
2014).

However, all these methods for the MJLSs, including the MM
methods and the LMMSE methods, never consider the presence
of unknown disturbances (UDs). In fact, the UDs exist in many
actual applications (Qin, Liang, Yang,Wang, &Yang, 2014). In target
tracking, the sensor bias and deception jamming existing in sensor
measurements can be modeled as the UDs to the nominal model
(Greco, Gini, & Farina, 2008; Qin et al., 2014). In process control,
the faults or failures can also be represented by UDs to the fault-
free model in fault detection and isolation (Li et al., 2014; Liu et al.,
2015).

By the fact that many actual applications in the complex
environment always face multiple unpredictable disturbances/
uncertainties, this paper formulates the estimation problem of
MJLSswith generalized unknowndisturbances (GUDs) inmeasure-
ments. Here, the upper-bound filter (UBF) for the more general
polytopic system with stochastic weights (regarded as stochastic
parameters) and GUDs is first derived by constructing the upper
bounds of covariances of estimation errors. Then, the MJLS with
GUDs is transformed into a special case of above polytopic sys-
tem via parameter substitution and the UBF is obtained recursively
through calculating the correlated relationship about Markovian
switching parameters. Furthermore, the optimal parameters are
derived in pursuit of the minimum upper bounds. The simula-
tion about the maneuvering target tracking validates the proposed
filter.

Throughout this paper, I and O are the identity matrix and
zero matrix with proper dimensions, respectively. (·) denotes
the same content as that in the previous parenthesis and [·]i,j
represents the (i, j)th sub-block of the corresponding matrix. E(·)
and ‘col’ represent the mathematical expectation operator and
column vector, respectively. For any two square matrices A and
B, A ≥ B(A > B) means A − B is positive semi-definite (positive
definite). The symbol ‘:=’ means definition and ‘⊗’ refers to the
Kronecker product. An indicator function 1{Θk=j} will be 1 ifΘk = j
or 0 otherwise.

The rest of this paper is organized as follows. The problem
formulation is presented in Section 2. The UBF and the MUBF are
given in Section 3. A simulation aboutmaneuvering target tracking
is presented in Section 4 to testify the proposed method. The
conclusion is finally made. All proofs are presented in Appendix.

2. Problem formulation

In maneuvering target tracking in the electronic countermea-
sures (ECMs) environment, the target maneuvering motion is usu-
ally described by Markovian switching of multiple models (Li &
Jilkov, 2005) while the sensor bias, deception jamming and lin-
earization approximation lead to the time-varying GUDs in mea-
surements (Qin et al., 2014). In other words, there coexist the
Markovian switching parameter and GUDs, which motivates us to
formulate the following discrete-timeMJLSwithGUDs inmeasure-
ments:

xk+1 = FΘkxk + GΘkwk, (1)
zk = HΘkxk + Akδk + DΘkvk, (2)

where xk and zk represent the system state and measurement,
respectively. {Θk} is the state of Markov chain with finite state
space {1, . . . ,M} and transition probability matrix Pt with its
(i, j)th element being pij := P{Θk+1 = j|Θk = i}. πj,k :=

P(Θk = j) represents the jth mode probability at instant k. FΘk ,

GΘk , HΘk , Ak and DΘk are known matrices with proper dimensions.
wk and vk are zero-mean andwhite noises with covariancesQk and
Rk, respectively, and independent of the initial state x0 satisfying
E(x01{Θ0=i}) = ψi,0 and E(x0xT01{Θ0=i}) = Vi,0. Here, {wk}, {vk} and
{Θk} are independent mutually, and δk satisfies
E

δkw

T
l−1


= O

E

δkv

T
l


= O

(∀ l ≥ k). (3)

As shown in Qin et al. (2014), δk represents a more general un-
certainty (i.e. GUD): an arbitrary linear weighted sum of f1k, f2k
and qk, where f1k representing a class of UD with dynamic prop-
erty is a linear time-varying function of W̄ k−1, V̄ k, and ∆̄k−1 with
W̄ k−1

:=

wT

0 , . . . , w
T
k−1

T , V̄ k
:=


vT1 , . . . , v

T
k

T and ∆̄k−1
:=

δT1 , . . . , δ
T
k−1

T ; f2k representing deterministic UD is an arbitrary
deterministic time-varying function; and qk representing random
UD is white noise independent of W̄ k−1, V̄ k, and ∆̄k−1.

Due to the presence of δk, the routine of orthogonality principle
for designing the LMMSE estimator will not work unless δk or its
effect on estimation error covariance can be identified. In fact, such
identification requires certain conditions which may be hardly
satisfied:

• to identify the value of the GUD, the precondition is that the
dimension of δk should be less than the rank of measurement
matrix. Otherwise, the GUD has to be further constrained being
piece-wise constant;

• to obtain the optimal filter gain K = PxzP−1
zz , we need to

estimate the cross-covariance Pxz between the predicted state
and measurement and the innovation covariance Pzz . However,
it is an intractable task due to the unknown relationship among
δk and δt ,wt−1 or vt for t < k.

It is highly demanded to develop a new filterwith the looser design
condition in pursuit of the best result in the worst situation.

Definition 1 (Definition of the UBF). A filter is called the UBF, i.e.,
ξ̂k+1|k+1,Φ

∗

k+1|k, S
∗

k+1,Φ
∗

k+1|k+1


= UBF


zk+1, ξ̂k|k,Φ

∗

k|k


if there exists a sequence of positive-definite matricesΦ∗

k+1|k, S
∗

k+1
andΦ∗

k+1|k+1 that satisfy

Φ∗

k+1|k ≥ Φk+1|k := E[(ξk+1 − ξ̂k+1|k)(·)
T
], (4)

S∗

k+1 ≥ Sk+1 := E[(zk+1 − ẑk+1|k)(·)
T
], (5)

Φ∗

k+1|k+1 ≥ Φk+1|k+1 := E[(ξk+1 − ξ̂k+1|k+1)(·)
T
], (6)

where the geometry augmentation ξk := col{xk1{Θk=i}, i = 1, . . . ,
M}; ξ̂k|k and ξ̂k+1|k are the estimate and prediction of ξk given
Z1:k := {z1, . . . , zk}, respectively; ẑk+1|k is the measurement
prediction; Φk+1|k, Sk+1 and Φk+1|k+1 are the covariances of the
prediction error, innovation and estimate error, respectively;
Φ∗

k+1|k, S
∗

k+1 and Φ∗

k+1|k+1 are the corresponding upper bounds to
be determined.

Our aim is to construct the upper bounds with one or more
free parameters to guarantee the upper-boundness in (4)–(6) and
further optimize parameters for the minimum upper bounds.
As shown later, the adaptive estimation problem with GUDs is
transformed into the online constrained parameter optimization.

Remark 2.1. The common idea of both the UBF and robust H∞

filters (Xiong & Lam, 2006; Zhang, 2009; Zhang & Boukas, 2009;
Zhao & Zeng, 2010) is to obtain the best accuracy in the worst case.
However, the considered estimation problem cannot be solved by
the H∞ filter because:



Download English Version:

https://daneshyari.com/en/article/4999936

Download Persian Version:

https://daneshyari.com/article/4999936

Daneshyari.com

https://daneshyari.com/en/article/4999936
https://daneshyari.com/article/4999936
https://daneshyari.com

