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a b s t r a c t

Synchronization in a group of linear time-invariant systems is studied where the coupling between each
pair of systems is characterized by a different output matrix. Simple methods are proposed to generate a
(separate) linear coupling gain for each pair of systems, which ensures that all the solutions converge to
a common trajectory.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization (consensus) of linear systems with general
dynamics (as opposed to first- or second-order integrators) has
been thoroughly investigated in the last decade. Early results
established the convergence of the solutions of coupled systems to
a common trajectory via static linear feedback under the condition
that the network topology is fixed (Tuna, 2008, 2009). Later, time-
varying topologies were allowed in Yang, Roy, Wan, and Saberi
(2011). As the limitations of the static feedback have gradually
been overcome,more general results employing dynamic feedback
emerged; see, for instance, Li, Duan, Chen, and Huang (2010) and
Seo, Shim, and Back (2009) for fixed and (Li, Ren, Liu, & Xie, 2013;
Seo, Back, Kim, & Shim, 2012) for time-varying topologies.

All of the above-mentioned works, in fact the majority of
the studies on synchronization of dynamical systems, cover the
dynamics

ẋi =
q

j=1

aij(xj − xi), i = 1, 2, . . . , q (1)

(where aij ∈ R≥0 and xi ∈ Rn) as a special case of their more
general setup. An equivalent representation of these systems reads
ẋ = −[L1 ⊗ In]x where x = [xT1 xT2 · · · x

T
q ]

T and L1 ∈ Rq×q is the
(weighted) Laplacian matrix (Olfati-Saber & Murray, 2004) whose
spectral properties have been proved extremely useful in the
analysis and design of multi-agent systems.
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A pleasant thing about (1) is that its geometricmeaning is clear:
‘‘Each agent moves towards the weighted average of the states of its
neighbors’’, as stated in Cao, Yu, Ren, and Chen (2013). In fact, in the
Euler discretization

x+i = xi + ε

q
j=1

aij(xj − xi) =
q

j=1

wijxj (2)

the right hand side becomes the weighted average for ε > 0
small enough. There are many ways to define average and,
qualitatively speaking, what any average attempts to achieve is
to compute some sort of center of the points considered in the
computation. Therefore an excusable and sometimes even useful
choice for weighted arithmetic mean is obtained by replacing
the scalar weights wij in (2) by symmetric positive semidefinite
matrices Pij = PT

ij ≥ 0 satisfying


j Pij = In. This suggests on (1)
the modification

ẋi =
q

j=1

Qij(xj − xi)

where Qij ∈ Rn×n are symmetric positive semidefinite matrices
replacing the scalar weights aij. (We take Qii = 0.) Whence follows
the dynamics ẋ = −Lxwhere

L =




j

Q1j −Q12 · · · −Q1q

−Q21


j

Q2j · · · −Q2q

...
...

. . .
...

−Qq1 −Qq2 · · ·


j

Qqj


qn×qn

(3)
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Fig. 1. LC oscillator system.

is thematrix-weighted Laplacian. In graph theoretical terms one can
say that the graph (with q vertices) associated to this L is such that
to each edge a nonzero positive semidefinite matrix Qij is assigned.
Note that for the standard Laplacian the associated graph’s edges
are assigned weights aij that are merely positive scalars.

This paper deals with linear time-invariant systems. We
consider a synchronization problem where the matrix-weighted
Laplacian naturally appears as a tool for both analysis and design.
In particular, we study a group of systems whose uncoupled
dynamics (described by the matrix A) are identical and the
communication between each pair (i, j) of systems has to be
realized via a (possibly) different output matrix Cij. Our goal for
this setup is to generate linear gains Gij to couple the pairs so that
all the solutions in the group converge to a common trajectory.
For A neutrally stable, we achieve this goal under detectability
(of the pairs (Cij, A) for Cij ≠ 0) and symmetry (Cij = Cji). We also
touch the more general situation (where A is allowed to yield
unbounded solutions) and establish synchronization under some
additional conditions concerning detectability and the strength of
connectivity of the network topology. Synchronization in an array
where each pair of systems is connected through a different output
matrix Cij giving rise to the matrix-weighted Laplacian is yet a
relatively unexplored area. Among the very few works employing
(in a system-theoretic setting) graphs whose edges are assigned
matrixweights is (Barooah, 2008), where the authors study certain
relevant applications in distributed estimation.

2. Motivation: coupled LC oscillators

In this section we provide an example array of coupled iden-
tical electrical oscillators where the matrix-weighted Laplacian L
appears naturally, describing the interconnection of individual sys-
tems. For an array of mechanical oscillators, see Tuna (2015).

Consider the individual system in Fig. 1, where p linear induc-
tors (Li > 0) are connected by linear capacitors (Ci > 0). The node
voltages are denoted by z[i] ∈ R. Letting z = [z[1] z[2] · · · z[p]]T
the model of this system reads Cz̈ + K−1z = 0 where K = diag
(L1, L2, . . . , Lp) and

C =


C1 + C2 −C2 0 · · · 0
−C2 C2 + C3 −C3 · · · 0
0 −C3 C3 + C4 · · · 0
...

...
...

. . .
...

0 0 0 · · · Cp + Cp+1

 .

Let now an array be formed by coupling q replicas of this system
in the arrangement shown in Fig. 2. If we let zi ∈ Rp denote
the node voltage vector for the ith system and g [k]ij = g [k]ji ≥ 0 be
the conductance of the resistor connecting the kth nodes of the
systems i and j, we can write the dynamics of the coupled systems
as Cz̈i + K−1zi +

q
j=1 Gij(żi − żj) = 0 where Gij = diag (g [1]ij ,

g [2]ij , . . . , g [p]ij ). Letting xi = [zTi żTi ]
T denote the state of the ith

system we at once obtain

ẋi =


0 Ip
−C−1K−1 0


xi +

q
j=1


0 0
0 C−1Gij


(xj − xi). (4)

Fig. 2. Array of LC oscillator systems.

Under the coordinate change below

ξi :=


K−1/2 0

0 C1/2


xi

we can transform (4) into ξ̇i = Sξi +
q

j=1 Qij(ξj − ξi) where

S :=


0 K−1/2C−1/2

−C−1/2K−1/2 0


and

Qij :=


0 0
0 C−1/2GijC−1/2


.

Note that S is skew-symmetric and Qji = Qij = Q T
ij ≥ 0. Finally,

stacking the individual states into a single vector ξ = [ξ T
1 ξ T

2 · · ·

ξ T
q ]

T the dynamics of the array take the form ξ̇ = ([Iq ⊗ S] − L)ξ ,
where L is the matrix-weighted Laplacian (3).

3. Problem definition

In this paper we consider a group of linear systems

ẋi = Axi + ui, i = 1, 2, . . . , q (5a)
Yi = {Ci1(x1 − xi), . . . , Ciq(xq − xi)} (5b)

with A ∈ Rn×n, where xi ∈ Rn is the state and ui ∈ Rn is the
(control) input of the ith system. The output set Yi contains the
relative measurements available to the ith system, where Cij ∈

Rmij×n and Cii = 0. Associated to the (ordered) set {Cij}, we let the
graph G = (V, E) represent the network topology, where V =
{v1, v2, . . . , vq} is the set of vertices and a pair (vj, vi) belongs to
the set of edges E when Cij ≠ 0.

The problemwe study is the stabilization of the synchronization
subspace of the systems (5). In particular, we search for a simple
method for choosing the gains Gij ∈ Rn×mij such that under the
controls

ui =

q
j=1

GijCij(xj − xi) (6)

the systems (5) (asymptotically) synchronize. That is, the solutions
satisfy ∥xi(t)−xj(t)∥ → 0 as t →∞ for all indices i, j and all initial
conditions. We establish synchronization under two different sets
of conditions. We first study the general case where the uncoupled
dynamics ż = Az are allowed to have unbounded solutions and
provide certain sufficient conditions for synchronization. Later we
will show that if A is neutrally stable, which was the case with
the electrical array considered earlier, then synchronization can be
achieved under much weaker assumptions.

4. Synchronization under joint Lyapunov detectability

In this section we study synchronization under the assumption
below.
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