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This paper investigates the finite-time stabilization of a class of switched stochastic nonlinear systems
in p-normal form, where the power orders of the system are dependent upon the switching signal
and the system structure is in non-triangular form. Compared with the existing results, some power
orders of the system are allowed to be even. Under suitable assumptions, a state feedback control law
with state-dependent switching is designed by using the convex combination method and the adding

a power integrator technique. It is shown that the resulting closed-loop system is finite-time stable in
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probability. Simulation results of a continuously stirred tank reactor (CSTR) system are provided to show
the effectiveness and applicability of the proposed method.
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1. Introduction

Switched systems, which are used to model many physical
or man-made systems displaying switching features, have been
extensively studied in past years. The main concerns in the study
of switched systems are the issues of stability and stabilization
(Liberzon, 2003; Long & Zhao, 2011, 2012, 2014; Ma, Liu, Zhao,
Wang, & Zong, 2015; Ma & Zhao, 2010; Sun & Wang, 2013;
Wu, 2009). It was shown in Liberzon (2003) that a switched
system might become unstable, even if all subsystems are stable.
Conversely, it may be possible to stabilize a switched system by
means of a suitable switching law, even if all subsystems are
unstable. Therefore, how to design an appropriate switching law
to achieve stability is of great importance. Switched stochastic
systems, as a special kind of switched systems, play essential
roles in modeling numerous physical and engineering dynamics
with stochastic disturbances. The stability of stochastic differential
equations with Markovian switching was studied in Mao (1999),
and the controller design for such systems was tackled in Wu, Xie,
Shi, and Xia (2009) and Wu, Yang, and Shi (2010). The stability of
switched stochastic nonlinear systems was addressed in Wu, Cui,
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Shi, and Karimi (2013), Zhai, Kang, Zhao, and Zhao (2012) and Zhao,
Feng, and Kang (2012). The stabilization of switched stochastic
nonlinear systems in strict-feedback form was studied in Hou, Fu,
and Duan (2013).

On the other hand, finite-time stability of nonlinear systems
has been one of the most important research topics due to its
important significance in theory and practice. It was shown in
Bhat and Bernstein (1998) that finite-time stable systems might
enjoy not only faster convergence but also better robustness and
disturbance rejection properties. For some representative work on
this topic, to name a few, we refer readers to Bhat and Bernstein
(2000), Moulay and Perruquetti (2008) and Yang, Jiang, and Zhao
(2015). Recently, Yin, Khoo, Man, and Yu (2011) extended the
concept of finite-time stability to stochastic nonlinear systems.
For the deterministic case, the finite-time stabilization has been
developed (Ding, Li, & Zheng, 2012; Hong, 2002; Huang, Lin, &
Yang, 2005; Li & Qian, 2006; Nersesov & Haddad, 2008; Shen &
Huang, 2012; Zhang, Feng, & Sun, 2012). Ai, Zhai, and Fei (2013),
Khoo, Yin, Man, and Yu (2013) and Yin and Khoo (2015) addressed
finite-time stabilization for some stochastic nonlinear systems.
Finite-time state feedback controller was constructed for high-
order stochastic nonlinear systems in strict-feedback form in Wang
and Zhu (2015). Finite-time output feedback stabilization of a class
of high-order stochastic nonlinear systems was investigated in
Zhai (2014).

It is worth pointing out that for stochastic nonlinear systems,
the power orders are all required to be positive odd numbers and
the system structure is in triangular form in the aforementioned
literature. Questions may arise: for switched stochastic nonlinear
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systems, if one or more power orders are positive even, can we
still achieve stabilization or even finite-time stabilization? Further-
more, what if the system structure is not in triangular form? If pos-
sible, under what conditions can we design such controllers? The
purpose of this paper is to address these questions. To this end, we
first propose a finite-time stability criterion for switched stochas-
tic nonlinear systems with state-dependent switching. It should
be pointed out that none of individual subsystems are required to
be finite-time stable in probability. With the help of the proposed
criterion, we investigate the finite-time stabilization for a class of
switched stochastic nonlinear systems with mixed odd and even
power orders, where the power orders of the system are depen-
dent upon the switching signal. By constructing a state-dependent
switching signal and applying the adding a power integrator tech-
nique, we design a finite-time state feedback control law to stabi-
lize the system.

The remainder of this paper is organized as follows. In Section 2,
the problem formulation and some preliminary results are given.
The finite-time stabilization result is developed in Section 3.
Section 4 provides an example to illustrate the proposed method.
The paper is concluded in Section 5.

Notations. R, denotes the set of all nonnegative real numbers. R"
denotes the real n-dimensional space. R™*" denotes the space of mxn
matrices with real entries. For a given vector or matrix X, X" denotes
its transpose. Tr{X} represents its trace when X is a square matrix.
| - | denotes the Euclidean norm. C' denotes the set of all functions
with continuous ith partial derivatives; E{x} denotes the expectation
of x. I, is the indicator function of A, i.e., I4(x) is 1 or 0 accordingly as
x € Aor x € A. k denotes the set of all functions, R, — R, which are
continuous, strictly increasing and vanishing at zero; k., denotes the
set of all functions which are of class k and unbounded. a A b means
the minimum of a and b.

2. Problem formulation and preliminaries

Considers the following stochastic nonlinear system:

% = (o0 GIXYT + fio (0)dt + 81, ) (Odw,

i=1,...,n—1,

Pn,o(t)

dx, = (hn,a(t) ()_(n)ug([) +fn.<r(t) (x))dt +g};g(t‘) (x)dw, (1)

wherex = (x4, ..., x,)T isthe system state,X; = (xq, ..., X)) . wis
a g-dimensional standard Wiener process defined on a probability
space (£2,F, {Fi}t>r,, P) with £ being a sample space, F being
a o — field, {F;}>¢, being a filtration and P being a probability
measure. o (t) : [tp, +00) — N = {1,2,..., N} is a piecewise
right continuous function, called the switching signal, N is the
number of subsystems, and ty is the initial instant. For each k €
N, ux € R is the control input, p;x,i = 1,...,n, are the power
orders which are positive integers, and h; x(x;),i = 1,...,n, are
smooth functions. The drift terms f; ,(x) and the diffusion terms
gixrx),i = 1,...,n,k € N, are Borel measurable and satisfy
fix(0) = 0 and g; x(0) = 0. The state of the system does not jump
at each switching instant.
The following assumptions are made on system (1).

Assumption 1. Foreachi € {1, 2, ..., n}, there exists at least one
power order p; x;, ki € N, which is a positive odd integer.
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Assumption 2. There exist a set of smooth functions hy k, (-)
0,hy,(-) >0,..., g, () >0,k eN,i=1,2,...,n

Assumption 3. There exist ¢; > 1,i = 1,...,n + 1,7
(0, 1) being a ratio of odd integers, smooth functions pg(x;)
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0, pgi(x)) > 0,i = 1,2,...,n,and ax(x), k € N, satisfying 0 <
Ae(x1) < ax(x) < 1and Z;:’:] ax(x) = 1 with Ay (x;) being smooth
functions, such that
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Remark 1. In Assumption 1, we relax some restrictions on power
orders in stochastic nonlinear systems considered in the existing
literature (Li, Jing, & Zhang, 2011, 2012; Wang & Zhu, 2015; Xie,
Duan, & Yu,2011; Xie & Tian, 2009; Zhai, 2014). Some power orders
in system (1) are allowed to be even. Assumption 2 is milder than
the general assumption in Hou etal. (2013) with h; x(-) = 1.Similar
assumptions can be found in Long and Zhao (2011).

Remark 2. From gq; > 1, p;, > 1 and (5), we can obtain q% <1

and M = qi —qi(1 —1) < 1,j = 1,...,1i, which indicates
qi+1 di

that the restrictions on the nonlinearities f; x(x) in this paper are
relaxed than those in Long and Zhao (2011). Moreover, due to the
existences of stochastic factors which were not considered in Long
and Zhao (2011), condition (4) is imposed on the nonlinearities
gikx),i=0,1,...,n,keN.

For the purpose of this paper, we will present some preliminary
results related to the finite-time stability for a switched stochastic
nonlinear system of the form:

dx(t) = fy o (K(E)dE + g7, K(E)dw (1), (6)

where x(-) € R" is the system state, and w(-) is a
g-dimensional standard Wiener process defined on a probability
space (£2, F, {Fi}¢>¢, P). o (0) : [t, +00) - N ={1,2,...,N}a
piecewise right continuous function, called the switching signal, N
is the number of subsystems, and ty is the initial instant. The func-
tions fy : R" — R"and g : R" — R?¥*" k € N, are continuous and
satisfy f,(0) = 0 and g;(0) = 0. The state of the system does not
jump at each switching instant.

In the following, we present the existence condition concerning
the solution of (6) that can be written as:

t t
x(©) = x(to) + / Foo (x())ds + / g o, () du(s).



Download English Version:

https://daneshyari.com/en/article/4999943

Download Persian Version:

https://daneshyari.com/article/4999943

Daneshyari.com


https://daneshyari.com/en/article/4999943
https://daneshyari.com/article/4999943
https://daneshyari.com

