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a b s t r a c t

In nonlinear regression choosing an adequate model structure is often a challenging problem. While
simple models (such as linear functions) may not be able to capture the underlying relationship among
the variables, over-parametrized models described by a large set of nonlinear basis functions tend to
overfit the training data, leading to poor generalization on unseen data. Piecewise-affine (PWA) models
can describe nonlinear and possible discontinuous relationships while maintaining simple local affine
regressor-to-output mappings, with extreme flexibility when the polyhedral partitioning of the regressor
space is learned from data rather than fixed a priori. In this paper, we propose a novel and numerically
very efficient two-stage approach for PWA regression based on a combined use of (i) recursive multi-
model least-squares techniques for clustering and fitting linear functions to data, and (ii) linear multi-
category discrimination, either offline (batch) via a Newton-like algorithm for computing a solution of
unconstrained optimization problems with objective functions having a piecewise smooth gradient, or
online (recursive) via averaged stochastic gradient descent.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Regression analysis is a supervised learningmethodwhich aims
at reconstructing the relationship between feature vectors x ∈
Rnx and continuous-valued target outputs y ∈ Rny from a set of
training data. PieceWise Affine (PWA) functions provide simple
yet flexible model structures for nonlinear regression, as they
can describe nonlinear and possible discontinuous relationships
between the regressor x and the output y. They are defined by
partitioning the regressor space into a finite number of polyhedral
regions with non-overlapping interiors and by considering an
affine model on each polyhedron.

The PWA regression problem amounts to learning, from a set
of training data, both the partition of the regressor space and
the parameters defining each affine submodel. PWA regression
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is an NP-hard problem in general (see Lauer, 2015 for a detailed
analysis on the complexity of PWA regression), and several
algorithms to estimate PWA maps from data are available in
the literature (see Garulli, Paoletti, & Vicino, 2012; Paoletti,
Juloski, Ferrari-Trecate, & Vidal, 2007 for an overview). A convex
relaxation, based on ℓ1 regularization, is proposed in Ohlsson
and Ljung (2013) to approximate the underlying combinatorial
problem arising from PWA regression. In Roll, Bemporad, and
Ljung (2004) the authors solve the PWA regression problem via
mixed-integer programming. As the number of integer variables
increases with the number of training samples, the approach
is limited to problems with a small number of observations in
which global optimality is sought. The algorithms proposed in
Bemporad, Garulli, Paoletti, and Vicino (2005), Ferrari-Trecate,
Muselli, Liberati, andMorari (2003), Juloski,Weiland, and Heemels
(2005) and Nakada, Takaba, and Katayama (2005) first compute
the parameters of the affine local models, then partition of the
regressor space. The observations are clustered by assigning each
datapoint to a submodel according to a certain criterion, estimating
at the same time the parameters of the affine submodels. In a
second stage, linear separation techniques are used to compute
the polyhedral partition. These algorithms have shown good
performance in practice, but can be numerically inefficient. The
greedy algorithm of Bemporad et al. (2005) to partition infeasible
sets of linear inequalities can be computationally heavy in case of
large training sets. The Expectation Maximization (EM) algorithm
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used to numerically implement the statistical clustering method
of Nakada et al. (2005) can become inefficient in case of PWA
maps with many parameters. In Juloski et al. (2005), the submodel
parameters are described through probability density functions,
which are iteratively updated throughparticle filtering algorithms;
however, an accurate approximation of the probability density
functions might require a high number of particles. In Ferrari-
Trecate et al. (2003), the regressor vectors are clustered through
a K -means-like algorithm and the submodel parameters are
obtained via weighted least-squares. Although Ferrari-Trecate
et al. (2003) is able to handle large training sets both in
the clustering and in the parameter estimation phase, poor
results might be obtained when the affine local submodels are
over-parametrized (i.e., the local models depend on redundant
regressors), since the distances in the regressor space (i.e., the
only criterion used for clustering) turns out to be corrupted by
redundant, thus irrelevant, information.

Another limitation affecting the PWA regression algorithms
mentioned above is that they can be executed only in a batch
mode and thus they are not suitable for online applications, in
which the PWA model must be updated in real-time when new
data are acquired. A computationally efficient algorithm for online
PWA regressionwas proposed in Bako, Boukharouba, Duviella, and
Lecoeuche (2011), where training samples are clustered iteratively
and model parameters are updated through recursive least-
squares. A main limitation of the approach is that the polyhedral
partition of the regressor space is given by the Voronoi diagram of
the clusters’ centroids, a less flexible structure than general linear
separation maps that may limit regression capabilities.

This paper describes a novel approach for approximating
vector-valued, and possibly discontinuous, functions in PWA form,
trying to overcome the aforementioned limitations of existing
methods. The proposed algorithm consists of two stages: (S1)
simultaneous clustering of the regressor vectors and estimation
of the model parameters, performed recursively by processing
the training pairs {x(k), y(k)} sequentially; (S2) computation of a
polyhedral partition of the regressor space through efficient multi-
class linear separation methods, either performed in a batch way
via a Newton-like method, or online (recursively) via an averaged
stochastic gradient descent algorithm. Overall, the PWA regression
algorithm is computationally very effective for offline learning
and suitable for online learning, as shown in the example. The
application of the proposed PWA regression algorithm to the
identification of linear parameter-varying and hybrid dynamical
models is discussed in Breschi, Bemporad, and Piga (2016).

The paper is organized as follows. The PWA regression problem
is described in Section 2. Section 3 describes the algorithm used
to simultaneously cluster the observed regressors and update
the model parameters, and the multi-category discrimination
algorithms used to compute the polyhedral partition of the
regressor domain. A simulation example is reported in Section 4
to show the effectiveness of the proposed approach.

1.1. Notation

Let Rn be the set of real vectors of dimension n. Let I ⊂
{1, 2, . . . , } be a finite set of integers and denote by |I| the car-
dinality of I . Given a vector a ∈ Rn, let ai denote the ith entry
of a, aI the subvector obtained by collecting the entries ai for all
i ∈ I , ∥a∥2 the Euclidean norm of a, a+ a vector whose ith element
is max{ai, 0}. Given two vectors a, b ∈ Rn, max(a, b) is the vec-
tor whose ith component is max{ai, bi}. Given a matrix A ∈ Rn×m,
A′ denotes the transpose of A, Ai the ith row of A, AI the subma-
trix of A obtained by collecting the rows Ai for all i ∈ I , AI,J the
submatrix of A obtained by collecting the rows and columns of A
indexed by i ∈ I and j ∈ J , respectively. Let In be the identity
matrix of size n, and 1n and 0n be the n-dimensional column vec-
tor of ones and zeros, respectively. The symbol ‘‘∝’’ denotes linear
proportionality.

2. Problem statement

Consider a vector-valued PWA function f : X → Rny defined
as

f (x) =


A1[1 x′]′ if x ∈ X1,
...

As[1 x′]′ if x ∈ Xs,

(1)

where x ∈ Rnx , X ⊆ Rnx , s ∈ N denotes the number of affine
local models defining f , Ai ∈ Rny×(nx+1) are parameter matrices,
and the sets Xi, i = 1, . . . , s are polyhedra, that form a complete
polyhedral partition1 of the space X. Function f is not assumed to
be continuous over the boundaries of the polyhedra {Xi}

s
i=1. There-

fore, to avoid that f might takemultiple values at the boundaries of
{Xi}

s
i=1, some inequalities can be replaced by strict inequalities in

the definition of the sets Xi to avoid ambiguities when evaluating
f on the boundary between neighboring polyhedra.

We address a PWA regression problem, which aims at com-
puting a PWA map f fitting a given set of N input/output pairs
{x(k), y(k)}Nk=1. Computing the PWA map f requires (i) choosing
the number of affine submodels s, (ii) computing the parameter
matrices {Ai}

s
i=1 that characterize the affine local models of the

PWA map f and (iii) finding the polyhedral partitioning {Xi}
s
i=1 of

the regressor space X where those local models are defined.
When choosing s one must take into account the tradeoff be-

tween fitting the data and avoiding model complexity and over-
fit, with consequent poor generalization on unseen data. This is
related to one of the most crucial aspects in function learning,
known as bias–variance tradeoff (Vapnik, 1998). In this work, we
assume that s is fixed by the user. The value of s can be chosen
through cross-validation, with a possible upper-bound dictated by
the maximum tolerable complexity of the estimated model.

3. PWA regression algorithm

As mentioned in Section 1, we tackle the PWA regression prob-
lem in two stages: S1 (iterative clustering and parameter estima-
tion) and S2 (polyhedral partition of the regressor space).

3.1. Recursive clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 1. The algo-
rithm is an extension to the case of multiple linear regressions and
clustering of the (computationally very efficient) approach pro-
posed in Alexander and Ghirnikar (1993) for solving recursive least
squares problems using inverse QR decomposition. Algorithm 1
updates the clusters and themodel parameters iteratively and thus
it is also suitable for online applications, when data are acquired in
real-time.

The algorithm requires an initial guess for the parameter
matrices Ai and cluster centroids ci, i = 1, . . . , s. Because of the
greedy nature of Algorithm 1, the final estimate depends on the
chosen initial conditions, and no fit criterion to minimize {∥y(k)−
f (x(k))∥}Nk=1 is optimized. Zero matrices Ai, randomly chosen
centroids ci, and identity covariance matrices Ri are a possible
initialization. In alternative, if Algorithm 1 can be executed in a
batch mode, one can initialize the parameter matrices A1, . . . , As
all equal to the best linear model

Ai ≡ argmin
A

N
k=1

y(k)− A


1
x(k)

2

2
, ∀i = 1, . . . , s (2)

1 A collection {Xi}
s
i=1 is a complete partition of the regressor domain X ifs

i=1 Xi = X and
◦

Xi ∩
◦

Xj = ∅, ∀i ≠ j, with
◦

Xi denoting the interior of Xi .
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