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a b s t r a c t

A data-driven method to design reference tracking controllers for nonlinear systems is presented. The
technique does not derive explicitly amodel of the system, rather it delivers directly a time-varying state-
feedback controller by combining an on-line and an off-line scheme. Like in other on-line algorithms,
the measurements collected in closed-loop operation are exploited to modify the controller in order to
improve the tracking performance over time. At the same time, a predictable closed-loop behavior is
guaranteed by making use of a batch of available data, which is a feature of off-line algorithms. The
feedback controller is parameterized with kernel functions and the design approach exploits results in
set membership identification and learning by projections. Under the assumptions of Lipschitz continuity
and stabilizability of the system’s dynamics, it is shown that if the initial batch of data is informative
enough, then the resulting closed-loop system is guaranteed to be finite gain stable. In addition to the
main theoretical properties of the approach, the design algorithm is demonstrated experimentally on a
water tank system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Model-based control design approaches require the derivation
of a mathematical model of the plant to be controlled, the identifi-
cation of themodel parameters and the design of a controller based
on the derivedmodel. This approach is widely used and gives good
results in many applications. However, in several cases, building
a detailed and accurate model of a nonlinear plant can be diffi-
cult, costly and time-consuming. In these situations, data-driven
design techniques represent a possible alternative approach, since
they do not require a detailed knowledge of the physics of the sys-
tem and rely only on the availablemeasured data and relatively lit-
tle prior information (e.g. qualitative information on the relations
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between the involved variables, approximate knowledge of the
system order, knowledge on the system’s structure and on the
most important internal states, etc.). In particular, in direct data-
driven approaches the controller is designed directly from the
measured data, eliminating completely the need for a model of the
plant.

The existing direct data-driven approaches can be divided into
on-line and off-line ones. In on-line schemes, the controller ismod-
ified with each new measurement obtained in closed-loop oper-
ation. Examples of on-line direct techniques are the perturbation
stochastic approximation control (see Spall & Cristion, 1998), the
model free adaptive control (see e.g. Hou & Jin, 2011, 2013a,b) and
the unfalsified control (see Safonov & Tsao, 1997, Van Helvoort
et al., 2007). Themain advantage of on-line techniques is the ability
to improve the control performance over time using the measured
data. However, since the controller can change at any time, its be-
havior is often hard to predict. In addition, guaranteeing stability of
these control schemes is quite challenging and requires restrictive
assumptions on the controlled system.

In off-line procedures, the design is based on a batch of
measurements, collected in preliminary experiments before the
controller becomes operational, and no further modification is
carried out during operation. Such techniques include the iterative
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feedback tuning (see e.g. Hjalmarsson, 2002, Sjöberg et al., 2003),
the correlation based tuning (see Miskovic, Karimi, Bonvin, &
Gevers, 2007), the virtual reference feedback tuning (see Campi
& Savaresi, 2006, Formentin et al., 2013) and the direct inversion
based control (see e.g. Norgaard, Ravn, Poulsen, & Hansen, 2000
and the references therein). In most of these techniques, stability
is not considered in the design phase and it is assessed by
simulations or experimental verification before the controller
becomes operational. Recently, an off-line direct technique
that relies on nonlinear set-membership identification (see e.g.
Milanese & Novara, 2011) has been proposed in Novara, Fagiano,
andMilanese (2013). The approach guarantees theoretically finite-
gain stability of the closed-loop system, as the number of data used
for the design approaches infinity. The main disadvantage of off-
line algorithms is that, unlike the on-line schemes, they do not
exploit the additional measurements obtained during controller
operation in order to improve the performance. On the other
hand, the behavior of a controller designed off-line is usually more
predictable.

In this paper, we propose a direct, data-driven design approach
that combines the advantages of on-line and off-line techniques.
The technique makes use of the theory of learning by projections
(see Theodoridis, Slavakis, & Yamada, 2011 and the references
therein) to update the controller on-line. At the same time,
under the assumptions of Lipschitz continuity and stabilizability
of the system’s dynamics, it is shown that if the initial batch
of data is informative enough, then the resulting closed-loop
system is guaranteed to be finite gain stable. In particular,
stability is achieved by enforcing a robust constraint on the
control input; such a constraint is derived by means of set-
membership identification. The mentioned theoretical results are
obtained by considering the control design problem as a static
inversion, where one aims to derive, from experimental data, an
approximate inverse of the system’s function. This is the same
theoretical framework as in Novara, Fagiano et al. (2013), but
the design approach and the results are completely different
in order to enable on-line learning while retaining the stability
guarantee. In addition, unlike the scheme in Novara, Fagiano et al.
(2013), the proposed on-line design algorithm leads to closed-loop
stability even when the number of initially available data is finite.
After describing the approach and its properties, we present the
experimental results obtained on a laboratory water tank system,
where we compare our technique with a purely off-line direct
design approach and a well tuned linear controller.

The paper is organized as follows. The control problem is
defined in Section 2 and the design algorithm is presented in
Section 3. The theoretical analysis of the proposed scheme is
described in Section 4.1, while Section 4.2 discusses the tuning of
the involved parameters. The experimental results are presented
in Section 5 and conclusions are drawn in Section 6.

2. Problem statement

We consider a discrete-time nonlinear system with one input
and nx states, represented by the following state equation:

xt+1 = g(xt , ut) + et+1, (1)

where t ∈ Z is the discrete time variable, ut ∈ R is the control
input, xt ∈ Rnx is the vector of measured states and et+1 ∈ Rnx

is the vector of disturbance signals that accounts for both the
measurement noise and process disturbances.

Assumption 1. The noise and disturbance term et+1 is bounded in
magnitude:

et+1 ∈ Bϵ
.
= {et+1 : ∥et+1∥ ≤ ϵ, ∀t ∈ Z}, (2)

for some ϵ > 0.

For a given compact domain Y and image set Z , let us denote
the class of Lipschitz continuous functions over Y , with Lipschitz
constant γ , with

F (γ , Y )
.
=

f : Y → Z : ∥f (ya) − f (yb)∥ ≤ γ ∥ya − yb∥,

∀ya, yb ∈ Y

.

Remark 1. Throughout the paper, the notation ∥ · ∥ stands for a
suitable vector norm chosen by the user (typically 2- or ∞-norm);
the presented results hold for any norm.

We further consider that the reference trajectories of interest
for the system to control are defined in a compact set X ⊂ Rnx , and
that input constraints are present in the form of a compact interval
U ⊂ R. The system at hand is assumed to enjoy the following
regularity property over these sets:

Assumption 2. For any x ∈ X , the function g is Lipschitz
continuous with respect to u, i.e.

∀x ∈ X, g(x, ·) ∈ F (γg ,U). (3)

The function g in (1) is unknown to the control designer, but a
set DN of past input and state measurements is available at time
t = 0:

DN
.
= {ut , ωt}

−1
t=−N , (4)

where

ωt
.
= (xt , xt+1). (5)

Assumption 3. The batch of data DN is such that ut ∈ U and
wt ∈ X × X, ∀t = −N, . . . ,−1.

Remark 2. If the system is open-loop unstable, a pre-stabilizing
controller (possibly a human operator, as in Fagiano & Novara,
2014) can be used to carry out the initial experiments to collect
the data DN . Such data are usually collected and commonly used
also in model-based approaches, to identify the parameters of the
mathematical model of the system. Another scenario to which our
approach applies iswhen a high-fidelitymodel of g is available, but
it is too complex to carry out model-based control design. In this
case, the data DN can be also generated through simulations with
such a model.

Remark 3. Theproblemsettings introduced so far can be extended
to the case of output-feedback control design, if the system state
is not known or not fully measured. In this case, one can replace
the state in (1) with a regressor or pseudo-state, composed by
present and past values of the input and of the output. Then, under
reasonable controllability/observability conditions, the dynamics
can still be written in the form (1), and algorithms and results
similar to those presented in the following can be derived. Another
option is to employ a state observer (that can also be designed from
data, see e.g. Novara, Ruiz, &Milanese, 2013), to obtain an estimate
of the state, which would be affected by estimation errors that can
be embedded in the term et+1. Similarly, when the system involves
dynamics that are neglected, i.e. there are additional states with
respect to those contained in x, our formulation and results are still
valid as long as one assumes to embed the effects of such neglected
dynamics into the additive term et+1.

In our theoretical derivations, we consider the notion of finite
gain stability (see e.g. Khalil, 1996).
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