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a b s t r a c t

In this paper, we develop a unified framework for studying constrained robust optimal control problems
with adjustable uncertainty sets. In contrast to standard constrained robust optimal control problemswith
known uncertainty sets, we treat the uncertainty sets in our problems as additional decision variables. In
particular, given a finite prediction horizon and ametric for adjusting the uncertainty sets, we address the
question of determining the optimal size and shape of the uncertainty sets, while simultaneously ensuring
the existence of a control policy thatwill keep the systemwithin its constraints for all possible disturbance
realizations inside the adjusted uncertainty set. Since our problem subsumes the classical constrained
robust optimal control design problem, it is computationally intractable in general. Nevertheless, we
demonstrate that by restricting the families of admissible uncertainty sets and control policies, the
problem can be formulated as a tractable convex optimization problem. We show that our framework
captures several families of (convex) uncertainty sets of practical interest, and illustrate our approach on
a demand response problem of providing control reserves for a power system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Robust finite-horizon optimal control of constrained linear sys-
tems subject to additive uncertainty has been studied extensively
in the literature, both in the control (Bemporad & Morari, 1999;
Löfberg, 2003; Skaf & Boyd, 2010) and operations research com-
munity (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004; Bert-
simas&Thiele, 2006; Postek&denHertog, 2016). Apart from issues
such as stability and recursive feasibility that arise in the context
of Model Predictive Control, significant amount of research is con-
cerned with the approximation and efficient computation of the
optimal control policies associated with such problems (Camacho
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& Bordons, 2013; Mayne, Rawlings, Rao, & Scokaert, 2000; Wang,
Ong, & Sim, 2010).

Commonly, robust control problems of constrained systems
over a finite horizon deal with uncertainty sets that are known a
priori. In this paper, we add another layer of complexity to these
problems by allowing the uncertainty sets to be decision variables
of our problems, and refer to such problems as constrained robust
optimal control problems with adjustable uncertainty sets. For
example, if the uncertainty sets are interpreted as a system’s
resilience against disturbance, then our framework can be used in a
robustness analysis setup for determining the limits of robustness
of a given system. The goal then is to determine the optimal size
and shape of the uncertainty sets which maximize a given metric,
while ensuring the existence of a control policy that will keep the
system within its constraints. Unfortunately, such problems are
computationally intractable in general, since they subsume the
standard robust optimal control problem with fixed uncertainty
set. The aim of this paper is to propose a systematic method for
finding approximate solutions in a computationally efficient way.

Our work is motivated by reserve provision problems, where
the adjustable uncertainty set is interpreted as a reserve capacity,
which a system can offer to third parties and for which it receives
(financial) reward. In this case, the maximum reserve capacity
can be computed by maximizing the size of the uncertainty set.
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Moreover, the reserve capacity is to be chosen such that for
every admissible reserve demand, i.e. for every realization within
the reserve capacity set, our system is indeed able to provide
this reserve without violating its constraints. Reserve provision
problems of this kind were first formulated and studied in Zhang,
Kamgarpour, Goulart, and Lygeros (2014) where it was shown that
for uncertainty sets described by norm balls, the problems can be
reformulated as tractable convex optimization problems. Another
problem that admits the interpretation as a robust control problem
with adjustable uncertainty set is robust input tracking (Gorecki,
Bitlislioglu, Stathopoulos, & Jones, 2015; Vrettos, Oldewurtel, Zhu,
& Andersson, 2014), where the aim is to determine the largest
set of inputs that can be tracked by a system without violating
its constraints. Reserve provision and input tracking problems
have recently received increased attention in demand response
applications of control reserves for electrical power grids (Vrettos,
Oldewurtel, & Andersson, in press; Wu, Chen, Zhang, & Su, 2014;
Zhang, Vrettos, Kamgarpour, Andersson, & Lygeros, 2015).

The purpose of this paper is two-fold: First, we generalize the
work of Gorecki et al. (2015) and Zhang et al. (2014) by considering
a larger class of adjustable uncertainty sets based on techniques
of conic convex optimization. Second, we provide a unified
framework for studying reserve provision, input tracking and
robustness analysis problems under the umbrella of constrained
robust optimal control with adjustable uncertainty sets. The main
contributions of this paper with respect to the existing literature
can be summarized as follows:
• We show that if (i) the uncertainty sets are restricted to those

that can be expressed as affine transformations of properly se-
lected primitive convex sets, and (ii) the control policies are
restricted to be affine with respect to the elements in these
primitive sets, then the problems admit convex reformulations
that can be solved efficiently, and whose size grows polynomi-
ally in the decision parameters. In particular, we extend the re-
sults of Zhang et al. (2014) andGorecki et al. (2015) in twoways:
First, we show that any convex set can be used as a primitive
set, allowing us to target amuch larger class of uncertainty sets.
Second, by allowing the primitive sets to be defined on higher
dimensional spaces than those of the uncertainty sets, we are
able to design more flexible uncertainty sets.

• We identify families of uncertainty sets of practical interest, in-
cluding norm-balls, ellipsoids and hyper-rectangles, and show
that they can be adjusted efficiently. Extending the work of
Gorecki et al. (2015) and Zhang et al. (2014), we also show that
by choosing the primitive set as the simplex, our framework
enables us to efficiently optimize over compact polytopes with
a predefined number of vertices. Furthermore, we prove that
if the primitive sets are polytopes (e.g. the simplex), then our
policy approximation gives rise to continuous piece-wise affine
controllers.

• We study a reserve provision problem that arises in power sys-
tems, and show how it can be formulated as a robust optimal
control problem with an adjustable uncertainty set. The prob-
lem is addressed using the developed tools, and we show that
it can be formulated as a linear optimization problem of mod-
est size that can be solved efficiently within 0.3 s, making it also
practically applicable.

This paper is organized as follows: Section 2 introduces the
general problem setup. Section 3 focuses on the problem of
adjusting the uncertainty sets, while in Section 4, we return to the
original problemand restrict the family of control policies to obtain
tractable instances thereof. Section 5 illustrates our approach
on a demand response problem, while Section 6 demonstrates
the usefulness of allowing the uncertainty sets to be projections
of high-dimensional primitive convex sets. Finally, Section 7
concludes the paper. The Appendix contains auxiliary results
needed to prove the main results of the paper.

Notation

For given matrices (A1, . . . , An), we define A := diag(A1, . . . ,
An) as the block-diagonal matrix with elements (A1, . . . , An) on
its diagonal. Aij denotes the (i, j)th element of the matrix A, while
A·j denotes the jth column of A. Given a cone K ⊂ Rl and two
vectors a, b ∈ Rl, a≼K b implies (b − a) ∈ K . For a matrix B ∈

Rm×l, B≽K 0 denotes row-wise inclusion in K . For a symmetric
matrix C ∈ Rn×n, C ≽ 0 denotes positive semi-definiteness of C .
Given vectors (v1, . . . , vm), vi ∈ Rl, we denote their convex hull as
conv(v1, . . . , vm). Moreover, [v1, . . . , vm] := [v⊤

1 . . . v⊤
m ]

⊤
∈ Rlm

denotes their vector concatenation.

2. Problem formulation

In this section, we formulate the robust optimal control
problem with adjustable uncertainty set. We consider uncertain
linear systems of the form
xk+1 = Axk + Buk + Ewk, (1)
where xk ∈ Rnx is the state at time step k given an initial state
x0 ∈ Rnx , uk ∈ Rnu is the control input and wk ∈ Wk ⊂ Rnw is an
uncertain disturbance. We consider compact polytopic state and
input constraints

xk ∈ X := {x ∈ Rnx : Fxx ≤ fx}, k = 1, . . . ,N,

uk ∈ U := {u ∈ Rnu : Fuu ≤ fu}, k = 0, . . . ,N − 1,
(2)

where Fx ∈ Rnf ×nx , fx ∈ Rnf , Fu ∈ Rng×nu , fu ∈ Rng , and nf (ng) is
the number of state (input) constraints. Given a planning horizon
N , we denote by φk(u,w) the predicted state after k time steps
resulting from the input sequence u := [u0, . . . , uN−1] ∈ RNnu

and disturbance sequencew := [w0, . . . , wN−1] ∈ RNnw .
In contrast to classical robust control problem formulations, we

assume that the uncertainty set Wk is not fixed and needs to be
adjusted according to some objective function ϱ : P (Rnw ) → R,
where P (Rnw ) denotes the power set of Rnw . For example, we
may think of ϱ(Wk) as the volume of Wk, although depending
on the application, it can represent other qualities such as the
diameter or circumference of Wk. Our objective is to maximize
ϱ(Wk), while simultaneously minimizing some operating cost and
ensuring satisfaction of input and state constraints. Hence, the cost
to be minimized is given by

max
w∈W

{J(u,w)} − λ

N−1
k=0

ϱ(Wk), (3)

where J(u,w) := ℓf (φN(u,w)) +
N−1

k=0 ℓ (φk+1(u,w), uk) is
some ‘‘nominal’’ cost function with ℓ : Rnx × Rnu → R and
ℓf : Rnx → R linear, and λ ≥ 0 is a user-defined weighting
factor. Note that convex quadratic cost can also be incorporated
in our framework by taking the certainty-equivalent cost J(u, w̄)
instead of the min-max cost in (3), where w̄ is some fixed (or
expected) uncertainty. Due to the presence of the uncertainties
w, we consider the design of a causal disturbance feedback policy
π(·) := [π0(·), . . . , πN−1(·)], with each πk : W0 × · · · × Wk →

Rnu , such that the control input at each time step is given by
uk = πk(w0, . . . , wk).1 Combining (1)–(3), we express the optimal
control problem compactly as

min max
w∈W


c⊤π(w)


− λϱ(W)

s.t. π(·) ∈ C, W ∈ P (RNnw ),
Cπ(w) + Dw ≤ d, ∀w ∈ W,

(4)

1 Strictly causal policies can be incorporated by restricting πk(·) to depend on
(w0, . . . , wk−1) only. For simplicity, this paper considers causal policies. However,
all subsequent results apply to strictly causal policies with minor modifications.
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