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a b s t r a c t

In this paper we study a family of controllers that guarantees attitude synchronization for a network of
agents in the unit sphere domain, i.e., S2. We propose distributed continuous controllers for elements
whose dynamics are controllable, i.e., control with torque as command, and which can be implemented
by each individual agent without the need of a common global orientation frame among the network,
i.e., it requires only local information that can be measured by each individual agent from its own
orientation frame. The controllers are constructed as functions of distance functions in S2, and we
provide conditions on those distance functions that guarantee that i) a synchronized network of agents
is locally asymptotically stable for an arbitrary connected network graph; ii) a synchronized network
is asymptotically achieved for almost all initial conditions in a tree network graph. When performing
synchronization along a principal axis, we propose controllers that do not require full torque, but rather
torque orthogonal to that principal axis; while for synchronization along other axes, the proposed
controllers require full torque. We also study the equilibria configurations that come with specific types
of network graphs. The proposed strategies can be used in attitude synchronization of swarms of under
actuated rigid bodies, such as satellites.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Decentralized control in a multi-agent environment has been
a topic of active research for the last decade, with applications in
large scale robotic systems. Attitude synchronization in satellite
formations is one of those applications (Lawton & Beard, 2002),
where the control goal is to guarantee that a network of fully
actuated rigid bodies acquires a common attitude. Coordination
of underwater vehicles in ocean exploration missions can also
be casted as an attitude synchronization problem (Leonard et al.,
2007).

In the literature of attitude synchronization, different solutions
for consensus in the special orthogonal group are found (Bondhus,
Pettersen, & Gravdahl, 2005; Cai & Huang, 2014; Dimarogonas,
Tsiotras, & Kyriakopoulos, 2009; Krogstad & Gravdahl, 2006;

✩ This work was supported from the EU H2020 Research and Innovation
Programme under GA No. 644128 (AEROWORKS), the Swedish Research Council
(VR), the Swedish Foundation for Strategic Research (SSF) and the Knut och Alice
Wallenberg (KAW) Foundation. Thematerial in this paperwas presented at the 54th
IEEE Conference onDecision and Control, December 15–18, 2015, Osaka, Japan. This
paperwas recommended for publication in revised formbyAssociate Editor Antonis
Papachristodoulou under the direction of Editor Christos G. Cassandras.

E-mail addresses: ppereira@kth.se (P.O. Pereira), dimos@kth.se
(D.V. Dimarogonas).

Lawton & Beard, 2002; Nair & Leonard, 2007; Sarlette, Sepulchre, &
Leonard, 2009; Song, Thunberg, Hu, &Hong, 2015; Thunberg, Song,
Montijano, Hong, & Hu, 2014), which focus on complete attitude
synchronization. In this paper, we focus on incomplete attitude
synchronization, which has not received the same attention: in
this scenario, each rigid body has a main direction and the global
objective is to guarantee alignment of all rigid bodies’ main
directions; the space orthogonal to each main direction can be left
free of actuation or controlled to accomplish some other goals.
Complete attitude synchronization requires more measurements
when compared to incomplete attitude synchronization, and
it might be the case that a rigid body is not fully actuated
but rather only actuated in the space orthogonal to a specific
direction, in which case incomplete attitude synchronization is
still feasible. Incomplete attitude synchronization is also denoted
synchronization on the sphere in Dörfler and Bullo (2014), Li and
Spong (2014),Moshtagh and Jadbabaie (2007), Olfati-Saber (2006),
Paley (2009) and Sarlette, Tuna, Blondel, and Sepulchre (2008),
where the focus has been on kinematic or point mass dynamic
agents, i.e., dynamical agents without moment of inertia.

In Dimarogonas et al. (2009), attitude control in a leader–
follower network of rigid bodies has been studied, with the
special orthogonal group being parametrized with Modified
Rodrigues Parameters. The proposed solution guarantees attitude
synchronization for connected graphs, but it requires all rigid
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bodies to be aware of a common and global orientation frame.
In Bondhus et al. (2005) and Krogstad and Gravdahl (2006), a
controller for a single-leader single-follower network is proposed
that guarantees global attitude synchronization at the cost of
introducing a discontinuity in the control laws. In Cai and Huang
(2014), attitude synchronization in a leader–follower network
is accomplished by designing a non-linear distributed observer
for the leader. In Chung, Ahsun, and Slotine (2009) and Chung,
Bandyopadhyay, Chang, and Hadaegh (2013), a combination of a
tracking input and a synchronization input is used; the tracking
input adds robustness if connectivity is lost and it is designed
in the spirit of leader-following, where the leader is a virtual
one and it encapsulates a desired trajectory; however, this
strategy requires all agents to be aware of a common and global
reference frame. In another line of work, in Nair and Leonard
(2007) and Sarlette et al. (2009), attitude synchronization is
accomplished without the need of a common orientation frame
among agents. Additionally, in Sarlette et al. (2009), a controller for
switching and directed network topologies is proposed, and local
stability of consensus in connected graphs is guaranteed, provided
that the control gain is sufficiently high. In Lawton and Beard
(2002), attitude synchronization is accomplished with controllers
based on behavior based approaches and for a bidirectional
ring topology. The special orthogonal group is parametrized
with quaternions, and the proposed strategy also requires a
common attitude frame among agents. In Mayhew, Sanfelice,
Sheng, Arcak, and Teel (2012), a quaternion based controller is
proposed that guarantees a synchronized network of rigid bodies
is a global equilibrium configuration, provided that the network
graph is acyclic. This comes at the cost of having to design
discontinuous (hybrid) controllers. A discrete time protocol for
complete synchronization of kinematic agents is found in Tron,
Afsari, and Vidal (2012). The authors introduce the notion of
reshaping function, and a similar concept is presented in this
manuscript. The protocol provides almost global convergence to a
synchronized configuration, which relies on proving that all other
equilibria configurations, apart from the equilibria configuration
where agents are synchronized, are unstable. In Thunberg et al.
(2014), controllers for complete attitude synchronization and for
switching topologies are proposed, but this is accomplished at the
kinematic level, i.e., by controlling the agents’ angular velocity
(rather than their torque). This work is extended in Song et al.
(2015) by providing controllers at the torque level, and similarly
to Lawton and Beard (2002), stability properties rely on high gain
controllers.

In Moshtagh and Jadbabaie (2007) and Olfati-Saber (2006) and
incomplete synchronization of kinematic agents on the sphere
is studied, with a constant edge weight function for all edges.
In particular, in Moshtagh and Jadbabaie (2007), incomplete
synchronization is used for accomplishing a flocking behavior,
where a group of agents moves in a common direction. In Paley
(2009), dynamic agents,whichmove at constant speed on a sphere,
are controlled by a state feedback control law that steers their
velocity vector so as to force the agents to attain a collective
circular motion; since the agents are mass points, the effect of
the moment of inertia is not studied. In Li and Spong (2014),
dynamic point mass agents, constrained to move on a sphere,
are controlled to form patterns on the sphere, by constructing
attractive and repelling forces; in the absence of repelling forces,
synchronization is achieved. Also, the closed-loop dynamics of
these agents are invariant to rotations, or symmetry preserving, as
those inMoshtagh and Jadbabaie (2007) and Olfati-Saber (2006) in
the sense that two trajectories, whose initial condition – composed
of position and velocity – differs only on a rotation, are the same
at each time instant apart from the previous rotation. In our
framework this property does not hold, since our dynamic agents

have amoment of inertia, unlike the agents in Li and Spong (2014),
Moshtagh and Jadbabaie (2007) and Olfati-Saber (2006), which is
another novelty of the paper in hand.

We propose a distributed control strategy for synchronization
of elements in the unit sphere domain. The controllers for
accomplishing synchronization are constructed as functions of
distance functions (or reshaping functions as denoted in Tron
et al., 2012), and, in order to exploit results from graph theory,
we impose a condition on those distance functions that will
restrict them to be invariant to rotations of their arguments. As
a consequence, the proposed controllers can be implemented by
each agent without the need of a common orientation frame.
We restrict the proposed controllers to be continuous, which
means that a synchronized network of agents cannot be a
global equilibrium configuration, since S2 is a non-contractible
set (Liberzon, 2003). Our main contributions lie in proposing
for the first time a controller that does not require full torque
when performing synchronization along a principal axis, but
rather torque orthogonal to that axis; in finding conditions
on the distance functions that guarantee that a synchronized
network is locally asymptotically stable for arbitrary connected
network graphs, and that guarantee that a synchronized network
is achieved for almost all initial conditions in a tree graph;
in providing explicit domains of attraction for the network to
converge to a synchronized network; and in characterizing the
equilibria configurations for some general, yet specific, types of
network graphs. A preliminary version of this work was submitted
to the 2015 IEEE Conference on Decision and Control (Pereira
& Dimarogonas, 2015). With respect to this preliminary version,
this paper presents significantly more details on the derivation of
the main theorems and provides additional results. In particular,
the concept of cone has been modified, with a clearer intuitive
interpretation; the proof for the proposition that supports the
result on local stability of the synchronized network has been
simplified; further details on the condition imposed on the
distance functions are provided; additional examples on possible
distance functions, and their properties, are presented; and
supplementary simulations are provided which further illustrate
the theoretical results. The remainder of this paper is structured
as follows. In Section 3, the problem statement is described; in
Section 4, the proposed solution is presented; in Sections 5 and 6,
convergence to a synchronized network is discussed for tree and
arbitrary graphs, respectively; and, in Section 7, simulations are
presented that illustrate the theoretical results.

2. Notation

0n ∈ Rn and 1n ∈ Rn denote the zero column vector and
the column vector with all components equal to 1, respectively;
when the subscript n is omitted, the dimension n is assumed to
be of appropriate size. In ∈ Rn×n stands for the identity matrix,
and we omit its subscript when n = 3. The matrix S (·) ∈ R3×3

is a skew-symmetric matrix and it satisfies S (a) b = a × b, for
any a, b ∈ R3. The map Π : {x ∈ R3

: xTx = 1} → R3×3,
defined as Π (x) = I − xxT , yields a matrix that represents the
orthogonal projection operator onto the subspace perpendicular
to x. We denote the Kronecker product between A ∈ Rm×n and
B ∈ Rs×t by A ⊗ B ∈ Rm s×n t . Given A1, . . . , An ∈ Rm×m, for some
n,m ∈ N, we denote A = A1 ⊕ · · · ⊕ An ∈ Rnm×nm (direct sum of
matrices) as the block diagonal matrix with block diagonal entries
A1 toAn. Given a, b ∈ Rn, a = ±b ⇔ a = b∨a = −b; additionally,
we say a ≠ 0 and b ≠ 0 have the same direction if there exists
λ ∈ R such that b = λa. We say a function f : Ω1 → Ω2 is of class
Cn, or equivalently f ∈ Cn(Ω1, Ω2), if its first n+1 derivatives (i.e.,
f (0), f (1), . . . , f (n)) exist and are continuous on Ω1. Finally, given a
set H , we use the notation |H| for the cardinality of H .
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