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a b s t r a c t

In this paper, a model predictive control scheme is proposed for constrained fractional-order discrete-
time systems. We prove that constraints are satisfied and we prescribe conditions for the origin to be an
asymptotically stable equilibrium point of the controlled system. A finite-dimensional approximation of
the original infinite-dimensional dynamics is employed for which the approximation error can become
arbitrarily small. The approximate dynamics is used to design a tube-based model predictive controller
which steers the system state to a neighbourhood of the origin of controlled size. Stability conditions
are finally derived for the MPC-controlled system which are computationally tractable and account
for the infinite dimensional nature of the fractional-order system and the state and input constraints.
The proposed control methodology guarantees asymptotic stability of the discrete-time fractional order
system, satisfaction of the prescribed constraints and recursive feasibility.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and motivation

Derivatives and integrals of non-integer order, often referred to
as fractional, are natural extensions of the standard integer-order
ones which enjoy certain favourable properties: they are linear
operators, preserve analyticity, and have the semigroup property
(Hilfer, 2000; Podlubny, 1999). Nonetheless, fractional derivatives
are non-local operators, that is, unlike integer-order ones, they
cannot be evaluated at a given point by mere knowledge of the
function in a neighbourhood of this point and for that reason
they are suitable for describing phenomena with infinite memory
(Podlubny, 1999).
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Fractional dynamics seems to be omnipresent in nature.
Examples of fractional systems include, but are not limited to,
semi-infinite transmission lines with losses (Clarke, Narahari
Achar, & Hanneken, 2004), viscoelastic polymers (Hilfer, 2000),
anomalous diffusion in semi-infinite bodies (Guo, Li, & Wang,
2015) and biomedical applications (Magin, 2010) for which Magin
et al. provided a thorough review (Magin, Ortigueira, Podlubny, &
Trujillo, 2011).

A shift towards fractional-order dynamics in the field of phar-
macokinetics may be observed after the classical in-vitro–in-vivo
correlations theory proved to have faced its limitations (Kytario-
los, Dokoumetzidis, & Macheras, 2010). Non-linearities, anoma-
lous diffusion, deep tissue trapping, diffusion across capillaries,
synergistic and competitive action and other phenomena give rise
to fractional-order pharmacokinetics (Dokoumetzidis &Macheras,
2008). In fact, Pereira derived fractional-order diffusion laws for
media of fractal geometry (Pereira, 2010). Increasing attention has
been drawn onmodelling and control of such systems (Dokoumet-
zidis &Macheras, 2011; Dokoumetzidis, Magin, &Macheras, 2010;
Sopasakis & Sarimveis, 2014), especially in presence of state and
input constraints.

Model predictive control (MPC) is an advanced, successful
and well recognised control methodology and its adaptation to
fractional systems is of particular interest. The current model
predictive control framework for fractional-order systems has
been developed in a series of papers where integer-order
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approximations are used to formulate the control problem
(Boudjehem & Boudjehem, 2010; Deng et al., 2010; Romero, de
Madrid, Mañoso, & Berlinches, 2010; Romero, de Madrid, Mañoso,
Milanés, & Vinagre, 2013). CARIMA (controlled auto-regressive
moving average) models are often used in predictive control
formulations for the approximation of the fractional dynamics
(Joshi, Vyawahare, & Patil, 2014; Romero et al., 2010, 2013). The
CARIMA-based approach has been used in various applications
such as the heating control of a semi-infinite rod (Rhouma &
Bouani, 2014), the power regulation of a solid oxide fuel cell (Deng
et al., 2010) and various applications in automotive technology
(Romero, de Madrid, Mañoso, & Vinagre, 2012). The well-known
Oustaloup approximation has also been used in MPC settings
(Romero et al., 2013). It should, however, be noted that such
approximations aim at capturing the system dynamics in a range
of operating frequencies and, as a result, are not suitable for a
rigorous analysis and design of controllers for constrained systems.
Additionally, all of the aforementioned works provide examples of
unconstrained systems; this shortcoming was in fact identified in
the recent paper (Joshi et al., 2014).

Nevertheless, this profusion of purportedly successful paradigms
ofMPC for fractional-order systems is not accompanied by a proper
stability analysis especially when input and state constraints are
present. A common denominator of all approaches in the literature
is that they approximate the actual fractional dynamics by integer-
order dynamics and design controllers for the approximate system
using standard techniques. No stability and constraint satisfaction
guarantees can be deduced for the original fractional-order sys-
tem. Currently, one of the very few works on constrained control
for fractional-order systems is due to Mesquine et al. where, how-
ever, only input constraints are taken into account for the design
of a linear feedback controller (Mesquine, Hmamed, Benhayoun,
Benzaouia, & Tadeo, 2015).

Hitherto, two approaches can be found in the literature in
regard to the stability analysis of discrete-time fractional systems.
The first one considers the stability of a finite-dimensional linear
time-invariant (LTI) system, known as practical stability, but fails
to provide conditions for the actual fractional-order system to be
(asymptotically) stable (Busłowicz & Kaczorek, 2009; Guerman,
Djennoune, & Bettayeb, 2012). This approach is tacitly pursued
in many applied papers where stability is established only for a
finite-dimensional approximation of the fractional-order system
(Romero et al., 2013; Romero, Tejado, Suárez, Vinagre, & deMadrid,
2009). On the other hand, fractional systems can be treated as
infinite-dimensional systems forwhich various stability conditions
can be derived (see for example Guermah, Djennoune, & Bettayeb,
2010, Thm. 2), but conditions are difficult to verify in practice
let alone to use for the design of model predictive – or other –
controllers.

1.2. Contribution

In this paper we describe a stabilising MPC framework for
fractional-order systems (of the Grünwald–Letnikov type) subject
to state and input constraints. We discretise linear continuous-
time fractional dynamics using the Grünwald–Letnikov scheme
which leads to infinite-dimensional linear systems. Using a
finite-dimensional approximation we arrive at a linear time-
invariant system with an additive uncertainty term which casts
the discrepancy to the infinite-dimensional system. We then
introduce a tube-based MPC control scheme which is known
to steer the state to a neighbourhood of the origin which can
become arbitrarily small as the order of the approximation of the
fractional-order system increases. In our analysis,we consider both
state and input constraints which we show that are respected
by the MPC-controlled system. We finally prove that under a

certain contraction-type condition the origin is an asymptotically
stable equilibrium point for the MPC-controlled fractional-order
system (see Section 3.2). In this work we provide, for the first
time, asymptotic stability conditions (Theorem 4) and we propose
a control methodology which guarantees the satisfaction of the
prescribed state and input constraints.

This paper builds upon Sopasakis, Ntouskas, and Sarimveis
(2015) where the unmodelled part of the system dynamics was
cast as a bounded additive uncertainty term and used existingMPC
theory to drive the system state in a neighbourhood of the origin
without, however, providing any (asymptotic) stability conditions
for the origin.

1.3. Mathematical preliminaries

The following definitions and notation will be used throughout
the rest of this paper. Let N, Rn, R+, Rm×n denote the set of non-
negative integers, the set of column real vectors of length n, the
set of non-negative numbers and the set of m-by-n real matrices
respectively. For any nonnegative integers k1 ≤ k2 the finite
set {k1, . . . , k2} is denoted by N[k1,k2]. Let x be a sequence of real
vectors of Rn. The kth vector of the sequence is denoted by xk
and its ith element is denoted by xk,i. We denote by Bn

ϵ = {x ∈

Rn
: ∥x∥ < ϵ} the open ball of Rn with radius ϵ and we use the

shorthand Bn
= Bn

1 . We define the point-to-set distance of a point
z ∈ X from A as dist(z, A) = infa∈A ∥z − a∥. The space of bounded
real sequences is denoted by ℓ∞. We define the space ℓ∞

n of all
sequences of real n-vectors z so that (zk,i)k ∈ ℓ∞ for i ∈ N[1,n].

Let E be a topological real vector space and A, B ⊆ E. For λ ∈ R
we define the scalar product λC = {λc : c ∈ C} and theMinkowski
sum A ⊕ B = {a + b : a ∈ A, b ∈ B}. The Minkowski sum of a finite
family of sets {Ai}

k
i=1 will be denoted by

k
i=1 Ai. The Minkowski

sum of a sequence of sets {Ai}i∈N is denoted by


i∈N Ai or


∞

i=0 Ai

and is defined as the Painlevé–Kuratowski limit of
k

i=1 Ai as k →

∞ (Rockafellar & Wets, 1998). The Pontryagin difference between
two sets A, B ⊆ E is defined as A⊖B = {a ∈ A : a+b ∈ A, ∀b ∈ B}.
A set C is called balanced if for every x ∈ C, −x ∈ C .

2. Fractional-order systems

2.1. Discrete-time fractional-order systems

Let x : R → Rn be a uniformly bounded function, i.e., there is a
M > 0 so that ∥x(t)∥ ≤ M for all t ∈ R. The Grünwald–Letnikov
fractional-order difference of x of order α > 0 and step size h > 0
at t is defined as the linear operator (Rhouma, Bouzouita, & Bouani,
2014) ∆α

h : ℓ∞
n → ℓ∞

n :

∆α
h x(t) =

∞
j=0

(−1)j


α

j


x(t − jh), (1)

where


α

0


= 1 and for j ∈ N, j > 0

α

j


=

j−1
i=0

α − i
i + 1

=
Γ (α + 1)

Γ (α − j + 1)j!
. (2)

The forward-shifted counterpart of ∆α
h is defined as F∆

α
h x(t) =

∆α
h x(t + h). Now, define

cα
j = (−1)j


α

j


=


j − α − 1

j


, (3)

and note for all j ∈ N that |cα
j | ≤ αj/j!, thus, the sequence (cα

j )j
is absolutely summable and, because of the uniform boundedness
of x, the series in (1) converges, therefore, ∆α

h is well-defined. It is
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