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a b s t r a c t

This paper proposes a technique to estimate the angular velocity of a rigid body from vector measure-
ments. Compared to the approaches presented in the literature, it does not use attitude information nor
rate gyros as inputs. Instead, vector measurements are directly filtered through a nonlinear observer
estimating the angular velocity. Convergence is established using a detailed analysis of the linear-time
varying dynamics appearing in the estimation error equation. This equation stems from the classic Euler
equations and measurement equations. A high gain design allows to establish local uniform exponential
convergence. Simulation results are provided to illustrate the method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This article considers the question of estimating the angular ve-
locity of a rigid body from embedded sensors. This broad ques-
tion has applications in various fields of engineering and applied
science. Some specific examples are as follows. In aerospace, the
deployment phase of spinning satellites starts by a detumblingma-
neuver during which the angular velocity is controlled in an active
way until it reaches a zero value (Bošković, Li, & Mehra, 2000). The
control strategy employs an estimation of this variable, in closed-
loop. High velocity spinning objects are very common in ballistics.
The XM25 air-burst rifle (smart-weapon) fires smart shells which
estimate their rotation to determine the traveled distance (so that
explosion of the projectile can be activated at any user-defined dis-
tance). Finally, the problem of angular velocity estimation can also
be found in the emerging field of smart devices for sports such as
the on-board football camera (Kitani, Horita, & Hideki, 2012) as it
is important for athletes in many sports to train their skills to spin
a ball.

In the literature, several types of methods have been proposed
to address this question. On the one hand, the straightforward
solution is to use a strap-down rate gyro (Titterton & Weston,
2004), which directly provides measurements of the angular
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velocities. However, rate gyros being relatively fragile and
expensive components, prone to drift, other types of solutions
are often preferred. Instead, a two-step approach is commonly
employed. The first step is to determine attitude from vector
measurements, i.e. on-board measurements of reference vectors
being known in a fixed frame. Vector measurements play a central
role in the problem of attitude determination as discussed in a
recent survey (Crassidis, Markley, & Cheng, 2007). In a nutshell,
when two or more independent vectors are measured with vector
sensors attached to a rigid body, its attitude can be simply defined
as the solution of the classicWahba problem (Wahba, 1965) which
formulates a minimization problem having the rotation matrix
from a fixed frame to the body frame as unknown. The second
step is to reconstruct angular velocities from the attitude. At any
instant, full attitude information can be obtained (Bar-Itzhack,
1996; Choukroun, 2003; Shuster, 1978, 1990). In principles, once
the attitude is known, angular velocity can be estimated from a
time-differentiation. The survey (Bar-Itzhack, 2001) names this
approach the derivative method. However, noise disturbs this
process. To address this issue, introducing a priori information in
the estimation process is a valuable technique to filter-out noise
from the estimates. For this reason, numerous observers using
Euler’s equations for a rigid body have been proposed to estimate
angular velocity (or angularmomentum,which is equivalent) from
full attitude information (Jorgensen & Gravdahl, 2011; Salcudean,
1991; Sunde, 2005; Thienel & Sanner, 2007). Besides this two-
step approach, a more direct solution can be proposed. In this
paper, we expose an algorithm that directly uses the vector
measurements and reconstructs the angular velocity in a simple
manner.
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The contribution of this paper is a nonlinear observer recon-
structing the angular velocity of a rotating rigid body from vector
measurements directly, namely by bypassing the relatively heavy
first step of attitude estimation. Variants and extensions of this ap-
proach can be found inMagnis (2015), Magnis and Petit (2013) and
Magnis and Petit (2015a,b). The proposedmethod allows one to es-
timate the angular velocity without any gyroscope. Contrary to the
method presented in Oshman and Dellus (2003), it does not em-
ploy time differentiation of the measurements.

This paper is organized as follows. In Section 2, we introduce
the notations and the problem statement. We analyze the attitude
dynamics (rotation and Euler equations) and relate it to the
measurements. In Section 3, we define a nonlinear observer with
extended state and output injection. To prove its convergence, the
error equation is identified as a linear time-varying (LTV) system
perturbed by a linear–quadratic term. The dominant part of the
LTV dynamics can be shown, by a scaling resulting from a high gain
design, to generate an arbitrarily fast exponentially convergent
dynamics. In turn, this property reveals instrumental to conclude
on the exponential uniform convergence of the error dynamics.
Illustrative simulation results are given in Section 4. Conclusions
and perspectives are given in Section 5.

2. Notations and problem statement

2.1. Notations

Norms. The Euclidean norms in R3 and in R9 are denoted by | · |.
The induced norm on 9 × 9 matrices is denoted by ∥·∥. Namely,
∥M∥ = maxX∈R9, |X |=1 |MX |.

The cross-product matrix associated with a vector x ∈ R3 is
denoted by [x×], i.e. ∀y ∈ R3, [x×] y = x × y. Namely,

[x×] ,

 0 −x3 x2
x3 0 −x1

−x2 x1 0


where x1, x2, x3 are the coordinates of x in the standard basis of R3.

2.2. Problem statement

Consider a rigid body rotating with respect to an inertial frame
Ri. Note R the rotation (orthogonal) matrix representing the linear
mapping from Ri to a body frame Rb attached to the rigid body,
expressed in Ri. R satisfies the differential equation

Ṙ = R [ω×] (1)

where ω is the angular velocity of the rigid body expressed in the
body frame. The dynamics of ω itself is governed by the famed
Euler’s equations (Landau & Lifchitz, 1982)

ω̇ = J−1 (Jω × ω + τ) (2)

where J = diag(J1, J2, J3) is the matrix of inertia1 and τ is the
external torque applied to the rigid body.

Consider two reference vectors å, b̊ expressed in the inertial
frame. Then, the expressions of a, b in the body frame at time t are

a(t) = R(t)T å, b(t) = R(t)T b̊. (3)

The variables a, b are called vector measurements. For implemen-
tation, they can be produced by direction sensors such as e.g.

1 Without loss of generality, we consider that the axes of Rb are aligned with the
principal axes of inertia of the rigid body.

accelerometers, magnetometers or Sun sensors to name a few
(Magnis & Petit, 2014).

We now formulate some assumptions.

Assumption 1. å, b̊ are constants and linearly independent.

Assumption 2. J and τ are known.

Assumption 3. ω is bounded: |ω(t)| ≤ ωmax at all times.

The problem we address in this paper is the following.

Problem 1. From measurements of the type (3), find an estimate
ω̂ of the angular velocity ω appearing in (1), assuming it satisfies
(2).

Remark 1. Without loss of generality, we assume åT b̊ ≥ 0 (if not,
one can simply consider −å instead of å). We denote

p , åT b̊ ≥ 0.

Assumption 1 implies that p is constant and p ∈ [0, 1). Note that,
for all time t

a(t)Tb(t) = åTR(t)R(t)T b̊ = åT b̊ = p.

3. Observer definition and analysis of convergence

3.1. Observer definition

From Assumption 1, we have d
dt å = 0. Hence, the time deriva-

tive of the measurement a is

ȧ = ṘT å = − [ω×] RT å = a × ω (4)

and the same holds for ḃ = b × ω. To solve Problem 1, the main
idea of the paper is to consider the reconstruction of the extended
9-dimensional state X by its estimate X̂

X =

aT bT ωT T , X̂ =


âT b̂T ω̂T

T
.

The state is governed by

Ẋ =

 a × ω
b × ω

E(ω) + J−1τ

 (5)

and the following observer is proposed

˙̂X =

 a × ω̂ − αk(â − a)
b × ω̂ − αk(b̂ − b)

E(ω̂) + J−1τ + k2

a × â + b × b̂


 (6)

where α ∈ (0, 2
√
1 − p) and k > 0 are constant (tuning) parame-

ters. Denote

X̃ , X − X̂ ,

ãT b̃T ω̃T

T
(7)

the error state. We have

˙̃X =

 −αkI 0 [a×]
0 −αkI [b×]

k2 [a×] k2 [b×] 0

 X̃ +

 0
0

E(ω) − E(ω̂)


. (8)

In Section 3.4 we will exhibit, for each value 0 < α <
(2

√
1 − p), a threshold value k∗such that for k > k∗, X̃ converges

locally uniformly exponentially to zero.
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