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a b s t r a c t

We consider the problem of link activation for distributed estimation with power constraint. To satisfy
the requirement of power consumption, we propose a stochastic link activation scheme, where each
sensor equipped with a distributed estimator sends data to its neighboring sensors according to different
probabilities. First, we design the optimal estimator gain of each sensor to minimize the state estimation
error covariance. Then, we find an upper bound of the expected state estimation error covariance and
provide a sufficient condition to guarantee the stability of the proposed estimator. Finally, we formulate
the link activation problem as an optimization problem, and convert it to a convex optimization.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Spurred by applications in various fields including battlefield
surveillance, intelligent transportation, environment monitoring,
and health care, recently there has been a surge of interest
in distributed state estimation using a wireless sensor network
(WSN). A wireless sensor network consists of a large number
of geographically distributed sensor nodes, which are capable of
measuring certain parameters of interest, such as temperature,
humidity, position and velocity of a vehicle. In the last decade,
many works on consensus-based distributed estimation were
reported, typically under the assumption that each sensor can
observe the target state and exchange the estimates with its
neighbors (Cattivelli & Sayed, 2010; Cui, Zhang, Lam, & Ma,
2013; Demetriou, 2010; Dong, Wang, Lam, & Gao, 2014; Li &
Ghassan, 2007; Li & Guo, 2014; Olfati-Saber, 2009; Ren, Beard, &
Kingston, 2005; Schizas, Ribeiro, & Giannakis, 2008; Shen, Wang,
Shu, & Wei, 2011; Spanos, Saber, & Murray, 2005; Stanković,
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Stanković, & Stipanović, 2009; Xi, He, & Liu, 2010; Yan, Qian,
Zhang, Yang, & Guo, 2016; Zhang, He, & Chen, 2016). Distributed
estimation strategy does not rely on the network topology, has
lower energy cost, and is more flexible for ad-hoc deployment
when compared with centralized and decentralized estimations
(Anderson & Moore, 1979; Iftar, 1993; Rao, Durrant-Whyte, &
Sheen, 1993; Sanders, Tacker, & Linton, 1974). Such distributed
state estimation, however, faces a common issue that the energy
of sensors distributed in a complex environment is usually limited
and the onboard batteries are difficult to recharge. In most cases, a
sensor consumes a considerable amount of energy when sending
data to its neighboring sensors, which is often unnecessary. For
a sensor, effectively selecting some of its neighboring sensors
to send data to can efficiently extend the lifetime of its
power source while guaranteeing a desired level of estimation
quality.

In recent years, communication power consumptionminimiza-
tion and battery lifetime maximization for sensor networks have
been extensively investigated, where sensor scheduling as an ef-
fective methodology has been carefully studied (Gupta, Chung,
Hassibi, & Murray, 2006; Joshi & Boyd, 2009; Liu, Wang, He,
& Zhou, 2015; Mo, Ambrosino, & Sinopoli, 2011a; Mo, Garone,
Casavola, & Sinopoli, 2011b; Ren, Cheng, Chen, Shi, & Zhang, 2014;
Shi, Chen, & Shi, 2014; Shi, Cheng, & Chen, 2011; Yang et al.,
2015; Zhang, Cheng, Shi, & Chen, 2016). The existing works can
be classified into three categories: (1) Deterministic scheduling
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(Joshi & Boyd, 2009; Mo et al., 2011a; Shi et al., 2011; Yang & Shi,
2015; Zhang et al., 2016): the sequence indicates when to use sen-
sors to send data, where timing is fixed at each step. In Joshi and
Boyd (2009), Mo et al. (2011a) and Yang and Shi (2015), a con-
vex optimization problem is formulated to select an optimal subset
of the sensors subject to limited power or channel bandwidth. In
Shi et al. (2011), a sensor scheduling scheme based on minimiz-
ing the estimation error is discussed for two scenarios: the sensor
has sufficient computational capability and the sensor has limited
computational capability. (2) Stochastic scheduling (Gupta et al.,
2006; Mo et al., 2011b): each sensor sends data to a remote es-
timator according to a given probability at each time step, and
an optimal probability distribution is obtained by solving an op-
timization problem. In Gupta et al. (2006), a stochastic sensor se-
lection strategy is proposed to schedule multiple sensors which
cannot send data simultaneously. (3) Event-triggered scheduling
(Liu et al., 2015; Ren et al., 2014; Shi et al., 2014): these sched-
ules utilize real-time measurements from the selected sensors. In
Ren et al. (2014), the power scheduling problem is formulated as a
Markov decision process, and a simple optimal dynamic schedule
is developed, which minimizes the average estimation error un-
der the energy constraint. In Shi et al. (2014), the state estimation
is considered based on the information frommultiple sensors that
provide their measurement updates according to separate event-
triggering conditions. In Liu et al. (2015), an event-based recur-
sive distributed filter is examined under a pre-determined Send-
on-Delta data transmission condition.

In this work, we consider optimal stochastic sensor scheduling
for distributed estimation subject to limited power constraint.
For deterministic sensor scheduling, finding an optimal sequence
of binary values, which indicates when a sensor sends data, is
in general difficult. Compared with a deterministic schedule, a
stochastic one is more flexible, which provides more feasible
schedules and distributes the energy of the sensors more
uniformly. On the other hand, although event-triggered scheduling
based on real-time measurements leads to better estimation
accuracy, it often has high computational complexity. Moreover,
the analysis of event-triggered schedules for distributed estimate
is much more difficult in general.

Most of the aforementioned works focused on scheduling
sensors efficiently with a single estimator, i.e., on a network
composed of multiple sensing devices and one fusion center. To
the best of our knowledge, very few studies are devoted to scheme
design of sensor scheduling for distributed state estimation
because the tight coupling among the sensors bring additional
challenges to analyzing the estimator stability and performance,
not to say designing optimal scheduling scheme. In Yang, Chen,
Wang, and Shi (2014), we investigate a particular scenario of
this problem, where each sensor is activated with an identical
probability to transmit its estimates. When a sensor is activated,
it can transmit data to all of its neighboring sensors. We refer to
this method of obtaining estimates as a stochastic sensor activation
scheme. Such a stochastic scheme is very easy to implement in
practice, under which the communication loads of the sensors
are equally distributed. The design with an identical activating
probability of the sensors, however, is unnecessary in most cases,
which will limit the applications of the scheme. For example, in
a heterogeneous sensor network, it is reasonable to assign the
activating probability to a sensor by jointly considering its power
and estimation accuracy.

In this paper, we extend the study of Yang et al. (2014) to a
more challenging and practical case, where each sensor decides to
send its data to any one of its neighboring sensors with different
probabilities subject to power constraint. As such, the scheme will
activate the communication link between each pair of sensors,
referred to as the link activation scheme. Thus, sensor activation

scheme with an identical probability becomes a special case of
the current one. Since more feasible activation solutions become
available, the new link activation scheme leads to better estimation
accuracy with more adaptive and efficient sensor allocation. In
addition, it is more robust in a time-varying circumstance. For
example, when some sensors are corrupted or attacked, it is easier
to adjust the activation probability of the communication link than
the deterministic transmitting sequence.

The main contributions of this paper are summarized as
follows.

(1) Different from the existing works (Cattivelli & Sayed, 2010;
Olfati-Saber, 2009; Schizas et al., 2008; Stanković et al.,
2009),we investigate distributed filtering under stochastic link
activation of a sensor network with limited energy;

(2) We obtain an optimal estimator for each sensor byminimizing
its estimation error covariance for known link probabilities;

(3) We derive an upper bound of the expected estimation
error covariance and provide a sufficient condition for its
stability, which relates to the network topology and scheduling
sequence;

(4) We obtain a set of optimal probabilities by relaxing the optimal
stochastic link activation to a convexproblem that can be easily
solved.

The remainder of the paper is organized as follows. In Section 2,
we introduce the system model and derive the optimal gain for
the distributed estimators. In Section 3, we study the stability of
the proposed estimator using stochastic link activation, and derive
an upper bound of the expected estimation error covariance. In
Section 4, we formulate the stochastic link activation under power
constraint as an optimization problem, which involves a series of
linear matrix inequalities (LMIs). We present a numerical example
in Section 5 to illustrate the performance of the optimal activation
scheme. We provide some concluding remarks in the end.

Notation. tr(·) denotes the trace of amatrix. vec(A) is the vector
formed by ‘‘stacking’’ the columns ofA in the natural order. diag(Ai)
denotes a block diagonal matrix with main diagonal block equal to
Ai. |A| denotes the cardinality of a set A. For matrices A and B, A⊗ B
is their Kronecker product. A ≥ 0 if A is positive semi-definite, and
A ≥ B if A − B ≥ 0. Moreover, A > 0 if A is positive-definite, and
A > B if A − B > 0. 1 denotes a vector of arbitrary dimension
with each component equal to one. I denotes the identity matrix.
◦ denotes the Hadamard product. To simplify the symmetrical
notation, (X)Y (·)T means (X)Y (X)T , and (X)(·)T means (X)(X)T .

2. Problem statement

Consider the following discrete linear time-invariant system:

x(k + 1) = Ax(k) + w(k), (1)

where x(k) ∈ Rm is the system state vector, w(k) ∈ Rm is the pro-
cess noise. Assume that x(0) and w(k) are independent zero-mean
Gaussian random vectors with covariancesΠ0 and Q , respectively.

A sensor network composed of n sensors is used to measure
x(k). The measurement equation of the ith sensor is given by

yi(k) = Hix(k) + vi(k), (2)

where vi(k) ∈ Rmi is zero-mean white Gaussian with covariance
matrix Ri > 0 which is independent of x(0), w(k) ∀k, i, and is
independent of vj(s) when i ≠ j or k ≠ s.

We model the sensor network as a directed graph G = (V , E)
with the nodes V = {1, 2, . . . , n} being the sensors and the edges
E ⊂ V × V representing the communication links. An edge (i, j)
means the existence of a link from sensor j to sensor i. The in-
neighboring sensors of sensor i is denoted by Ni = {j : (i, j) ∈ E},
and its dimension is denoted by di = |Ni|. Also, denote the set of
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