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a b s t r a c t

This paper studies a class of robust cooperative learning control problems for directed networks of agents
(a) with nonidentical nonlinear dynamics that do not satisfy a global Lipschitz condition and (b) in
the presence of switching topologies, initial state shifts and external disturbances. All uncertainties are
not only time-varying but also iteration-varying. It is shown that the relative formation of nonlinear
agents achieved via cooperative learning can be guaranteed to converge to the desired formation
exponentially fast as the number of iterations increases. A necessary and sufficient condition for
exponential convergence of the cooperative learning process is that at each time step, the network
topology graph of nonlinear agents can be rendered quasi-strongly connected through switching along
the iteration axis. Simulation tests illustrate the effectiveness of our proposed cooperative learning results
in refining arbitrary high precision relative formation of nonlinear agents.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Networks of multiple interacting agents can be used to repre-
sent groups of individuals, such as flocking birds, schooling fishes,
swarming bees, and people in social networks. In such complex
systems an important class of problems is what kind of interac-
tion rules will lead to cooperation among the agents. Of particu-
lar interest are rules that involve only nearest neighbors or local
information, where consensus/synchronization and formation are
twowidely-considered problems (see, e.g., Abdessameud& Tayebi,
2013; Cao,Morse, &Anderson, 2008; Jadbabaie, Lin, &Morse, 2003;
Lin, Francis, & Maggiore, 2005; Moreau, 2005; Olshevsky & Tsitsik-
lis, 2009; Ren & Beard, 2005; Schenato & Fiorentin, 2011). These
types of cooperative control problems have important practical
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applications in many areas, such as spacecrafts, mobile robots and
unmanned aerial vehicles (see, e.g., Bullo, Cortés, &Martínez, 2009;
Cao, Yu, Ren, & Chen, 2013; Olfati-Saber, Fax, & Murray, 2007 and
references therein).

A recent focus in cooperative control concerns situations where
agents in a network learn to cooperate, see, e.g., Ahn and Chen
(2009), Li and Li (2014), Liu and Jia (2012a,b), Meng, Jia, Du, and
Zhang (2014), Meng, Jia, Du, and Zhang (2015b) and Xu, Zhang,
and Yang (2011) for formation keeping, Li and Li (2013), Shi,
He, Wang, and Zhou (2014), Xiong, Yu, Chen, and Gao (in press),
Yang, Xu, and Yu (2013) and Yang, Xu, Huang, and Tan (2014)
for leader or reference trajectory following and Meng, Jia, and Du
(2015a) for consensus seeking. It is common to observe groups
of individual agents that learn to cooperate in practice. Take
for example a marching band, which motivated the authors’ re-
cent paper (Meng & Moore, 2016). Through repetitively practic-
ing, a group of performers in the marching band march to seek
desired formations as well as playing instruments with a spec-
ified music (http://www.wikihow.com/Practice-Marching-Band-
Formations). In such a picture of cooperative learning for a group
of performers, the key ideas are repetition by individuals and com-
munication between neighbors. Other similar examples include
synchronized swimming, formation soldiers marching and aero-
batic flights displaying (see also Meng &Moore, 2016). In addition,
there are a number of applications where cooperative learning is
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desirable, such as when high precision control performance is re-
quired, see, e.g., Ahn, Moore, and Chen (2010) for satellites forma-
tion flying, Chen and Jia (2010) for robot formation running and
(Sun, Hou, & Li, 2013) for coordinated trains’ trajectory tracking.

Studies to develop analysis tools for cooperative learning are
far from complete. The related results all benefit from the use of
iterative learning control (ILC) approaches (see the ILC surveys
(Ahn, Chen, & Moore, 2007; Bristow, Tharayil, & Alleyne, 2006;
Xu, 2011) for more details on this approach), for which there are
two main problems. One is because of the switching topology of
interactions among agents, especially with respect to iteration,
which renders the cooperative learning processes to be dependent
on iteration-varying parameters. This may violate one of the
fundamental requirements on ILC—repetitiveness (Meng &Moore,
2016). As a result many of the existing cooperative learning results
are applicable for only iteration-invariant topology (see, e.g., Ahn
& Chen, 2009; Li & Li, 2013, 2014; Shi et al., 2014; Xiong et al.,
in press; Xu et al., 2011; Yang et al., 2014). When considering
iteration-varying topologies, most existing results require the
agents to be strongly or quasi-strongly connected at all iterations in
order for the learning processes to meet the contraction mapping
principle and thus achieve convergence as the number of iterations
increases (see, e.g., Liu & Jia, 2012a,b; Meng et al., 2015a,b; Yang
et al., 2013). The other main problem is related to the dynamics
of agents when those dynamics are nonlinear. In ILC, the global
Lipschitz assumption is usually imposed as an assumption on
nonlinear systems (Xu, 2011). In the cooperative learning problem
most existing results for nonlinear agents require their dynamics
to satisfy the global Lipschitz assumption (see, e.g., Ahn & Chen,
2009; Liu & Jia, 2012a,b; Meng et al., 2014; Xu et al., 2011; Yang
et al., 2014) or to be locally Lipschitz but exactly known (see, e.g.,
Li & Li, 2013, 2014).

In this paper, we further investigate the cooperative learning
problem of Meng et al. (2014) and Meng and Moore (2016) for
formation control of nonlinear agents. We should point out that
we extend the results of Meng et al. (2014) and Meng and Moore
(2016) by relaxing the constraints on the agents’ dynamics so that
a global Lipschitz condition is not required and iteration-varying
uncertainties are admitted. The contributions of the developed
results are stated especially by comparison with the existing
results as follows.

(1) We consider networks of agents with nonidentical time-
varying nonlinear dynamics, which are not required to satisfy
the global Lipschitz condition and which simultaneously
deal with iteration-varying initial state shifts and external
disturbances. This extends the results of Meng et al. (2014)
andMeng andMoore (2016) for networks of agents with time-
invariant nonlinear dynamics to more general networks with
iteration-varying uncertainties.

(2) Although ILC-motivated formation of agents with nonlinear
dynamics not fulfilling the global Lipschitz condition is
handled in Meng et al. (2015b), the switching topologies are
required to satisfy the quasi-strong connectivity (or spanning
tree) condition for each time step and each iteration. The
same problem exists in Meng et al. (2015a) although it can
address the robust issues on initial state shifts and external
disturbances. In contrast to Meng et al. (2015a,b), we only
need the joint quasi-strong connectivity condition of switching
topologies along the iteration axis. This retains the idea of basic
convergence results for cooperative learning of agents inMeng
and Moore (2016).

(3) Our cooperative learning results contain a necessary and
sufficient robust consensus result for networks with both
multiplicative and additive disturbances, which improve the
traditional consensus results of, e.g., Schenato and Fiorentin
(2011).

In addition, we show that cooperative learning among agents
in networks with nearest neighbor communications can be robust
against exponentially convergent iteration-varying uncertainties,
but in general cannot deal with those bounded and/or non-
exponentially convergent uncertainties from the standard stability
point of view (Rugh, 1996). We also give simulation examples for
nonlinear agents to demonstrate the validity of our results.

We organize the remainder of this paper as follows. We give
the problem statements in Section 2 for cooperative learning of
nonlinear agents subject to switching topologies that change in
two directions (time and iteration). In Section 3, we present the
two-dimensional (2-D) dynamics analysis for nonlinear agents
under the action of an ILC-motivated distributed algorithm, based
on which we obtain the necessary and sufficient cooperative
learning results (with an exponential convergence speed) in
Section 4. We provide simulation examples, and then conclusions,
in Sections 5 and 6, respectively. In the Appendix, we present the
proofs of lemmas and theorems.

Notations: We use Im, 0 and diag{·} to represent the mth-
order identity matrix, the null matrix with required dimensions
and the (block) diagonal matrix, respectively. We adopt In =

{1, 2, . . . , n}, ZN = {0, 1, . . . ,N}, ZN \ {0} = {1, 2, . . . ,N}, 1n =

[1, 1, . . . , 1]T ∈ Rn and
j

i=l Ai = Aj · · · Al+1Al if j ≥ l,
j

i=l Ai = In
if j < l and


−1
i=0 Aifi = 0 for some appropriately dimensioned

sequences {Ai} and {fi}. In addition, ∥A∥∞ is the maximum row
sumnorm (respectively, l∞ norm) of amatrix (respectively, vector)
A and A ◦ B (respectively, A ⊗ B) is the Hadamard (respectively,
Kronecker) product ofmatrices A and B. We say that amatrix A ≥ 0
is nonnegative if all its entries are nonnegative and a nonnegative
matrix A ∈ Rn×n is stochastic if A1n = 1n.

2. Problem statement

2.1. High-precision formation via ILC

Consider networks with n nonlinear agents. We are interested
in high-precision formation tasks that are achieved via ILC (see
also Liu & Jia, 2012b; Meng et al., 2014; Meng et al., 2015b; Meng
& Moore, 2016). Thus, the agents’ dynamics evolve along two
directions: a finite time axis for t ∈ ZN and an infinite iteration
axis over k ∈ Z+. Assume that each agent vi has the following
nonidentical nonlinear dynamics:

xi,k(t + 1) = fi

xi,k(t), t


+ ui,k(t) + wi,k(t)

xi,k(0) :
xi,k(0) − xi0


∞

≤ ψiσ
k
i

wi,k(t) :
wi,k(t) − wi(t)


∞

≤ ϑi(t)υk
i (t)

, i ∈ In (1)

where xi,k(t) ∈ Rm is the state; ui,k(t) ∈ Rm is the protocol
or control input; wi,k(t) ∈ Rm and wi(t) ∈ Rm are (unknown)
disturbances; xi0 ∈ Rm is a constant vector; ψi > 0, 0 ≤ σ i < 1,
ϑi(t) > 0 and 0 ≤ υi(t) < 1 are (unknown) scalars; and
fi(y, t) , [fi1(y, t), fi2(y, t), . . . , fim(y, t)]T ∈ Rm is a vector-valued
nonlinear function for any y ∈ Rm and t ∈ ZN . Note that the
system (1) is described in a 2-D ILC framework, with time step t
and iteration number k as two independent variables (Ahn et al.,
2007). For each iteration k, the system (1) operates over t ∈ ZN ,
which is repeated for the next iteration k+1 after the control input
ui,k(t) is updated by ui,k+1(t)with the application of ILC algorithms
(see, e.g., the following ILC algorithm of (5)).

In this paper, we aim at addressing ILC-motivated formation
tasks formally given in the following definition (see, e.g., Liu & Jia,
2012a; Meng et al., 2014; Meng & Moore, 2016).

Definition 1. We say that the agents of (1) under a designed
protocol achieve formation exponentially fast if there exists some
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