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a b s t r a c t

This paper presents a frequency domain identification technique for estimation of Linear Parameter-
Varying (LPV) differential equations. In a band-limited setting, it is shown that the time derivatives of
the input and output signals can be computed exactly in the frequency domain, even for non-periodic
inputs and parameter variations. The method operates in an errors-in-variables framework (noisy input
and output), but the scheduling signal is assumed to be known. Under these conditions, the proposed
estimator is proven to be consistent.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A good example of an LPV system is a construction crane, which
is basically a pendulum of varying length l(t). The cable length
directly influences the poles of the system, thereby determining its
eigenfrequency. In the linear parameter varying (LPV) framework
(Rugh & Shamma, 2000; Tóth, 2010), we call variables like l(t)
scheduling parameters, and denote them as p(t). The dynamic
relation between input u(t) and output y(t) is still linear, but it
depends on the (continuously varying) scheduling parameter.

There are two main classes of LPV identification techniques:
local and global approaches. In the local LPV framework (Bruzelius
& Breitholtz, 2001; De Caigny, Camino, & Swevers, 2011), a
nonlinear or parameter-varying model is linearized at different
operating points. The result is a set of LTI models, which are then
interpolated over the operating range. Here, we opt to directly
estimate an LPV model, from a single, global experiment, where
the scheduling parameter p(t) varies during the measurement,
covering its entire operating range. Amongst other advantages,
a global modeling approach captures transient dynamics, when
the plant shifts from one operating point to another. Additionally,
the rate of change of the scheduling parameter can be directly
accounted for.
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During the past decade, a lot of research has been dedicated
to the identification of LPV input–output equations, but mostly
in discrete-time (DT) and mostly for non-periodic scheduling
signals (Laurain, Gilson, Tóth, & Garnier, 2010; Tóth, Laurain,
Gilson, & Garnier, 2012). For an overview, see Laurain, Gilson,
Garnier, and Tóth (2011). Only in Felici, van Wingerden, and
Verhaegen (2007) time domain subspace methods have been
developed for DT systems with dedicated, periodically varying
scheduling sequences. However, itwas shown inGoos and Pintelon
(2014) that these results can be improved upon, using a frequency
domain approach. In this paper we study the frequency domain
identification of parameter-varying differential equations. The
advantages of continuous-time (CT) LPV modeling are:

• Most physical phenomena are continuous-time, hence CT-
LPV models are closer to the physics than DT-LPV models.
For example, the discrete-time approximation of a differential
equation with static dependency on the scheduling parameter
can have a dynamic dependency on the scheduling [10].

• Although the final implementation is in discrete-time, ad-
vanced LPV control design methods are mostly based on
continuous-time models (Lovera, Navara, Lopes dos Santos, &
Rivera, 2011).

• Computer aided design/engineering software tools mostly use
CT models.

In Laurain, Tóth, Gilson, and Garnier (2010), the first steps are
taken towards direct identification of an LPV differential equation,
using an instrumental variables approach. However, the input
signal is assumed to be known, and the time derivatives are
approximated using filtering operations. The frequency domain
approach proposed in this paper has the following advantages:
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• The time derivatives can be computed exactly.
• It is easy to select the frequency band(s) of interest, meaning no

additional filters should be designed.
• Both input and output signals can be corrupted by colorednoise.
• Easy use of nonparametric noise models in the weighted

nonlinear least squares cost function.

The proposed identification algorithm is based on the Linear Time-
Varying (LTV) identification algorithm described in Lataire and
Pintelon (2011). A first key difference is that the time-varying
coefficients are now replaced by functions of the scheduling
parameter p(t).

Na
n=0

an(p(t))
dny0(t)
dtn

=

Nb
n=0

bn(p(t))
dnu0(t)

dtn
(1)

where the subscript of x0 denotes a noiseless quantity. The coeffi-
cients of the LPV Input–Output (IO)model (1) are approximated by
linear combinations of known/chosen basis functions in p(t), viz.
an(p(t))
bn(p(t))


=

Np
i=0


a[n,i]
b[n,i]


φi(p(t)). (2)

The results in this paper also hold if the scheduling parameter is
multivariable. As an alternative to (2), Support Vector Machines
(SVMs) (Laurain, Tóth, Zheng, & Gilson, 2012) or Gaussian
Processes (GPs) can be used to model the coefficient functions.

A second key difference with (Lataire & Pintelon, 2011), is that
the full covariance matrix is used to weigh the residual errors,
to ensure consistency. The consistency and correctness of the
proposed Linear Parameter-Varying Input–Output (IO) estimator is
proven, and illustrated on a simulation example. The results hold
for arbitrary non-steady-state, non-periodic data. Even though the
identification problem is considered in the frequency domain, the
input u(t) and scheduling p(t) do not have to be periodic.

2. The sampled LPV differential equation in the frequency
domain

The Fourier transform of (1) will be computed from the
measured time domain signals, which are sampled uniformly at
a sample frequency fs = 1/Ts (Ts is the sample time). A total of N
samples of each signal is acquired.

Definition 1. The Discrete Fourier Transform (DFT), at the angular
frequencies ωk = 2πkf0 ∀k ∈ [0,N − 1], with f0 = fs/N, is defined
as

DFT {x(nTs)} = X (k) =
N−1
n=0

x(nTs)e−jωknTs . (3)

Definition 2. Similarly, the inverse Discrete Fourier Transform
(iDFT) is defined as

iDFT {X (k)} =
1
N

N−1
k=0

X (k)ejωknTs . (4)

We denote the DFTs of the input u(t) and the output y(t) with U (k)
and Y (k) respectively.

Assumption 3. Band-limited excitation: the Fourier transforms of
the true input and scheduling signals are zero beyond the Nyquist

frequency: |U0(jωk)| = 0 and |P0(jωk)| = 0 for kf0 ≥ fnyq = fs/2.
Furthermore, the basis functions are band-limited w.r.t. fnyq.

The continuous time signals are windowed, because only the
time frame [0, T ] is considered. If a rectangular window w(t) is
used, the Fourier transform becomes

F


w(t)

dnx(t)
dtn

 
jωk

= (jωk)
nX (jωk)

+

n−1
r=0

(jωk)
n−1−r 

x(r)(T−) − x(r)(0+)


  

=Tnx (jωk)

(5)

where x(r) is the rth time derivative of x, X (jωk) is the Fourier trans-
form of x(t) and ωk = 2πkf0 is the angular frequency ∀k ∈ [0,N −

1]. Eq. (5) is proven in Appendix 5.B of Pintelon and Schoukens
(2012) using integration by parts. Note that the difference between
the initial and end conditions of the signal determine the poly-
nomial T n

x (jωk). By including the transient term T n
x (jωk) in (5), the

derivatives of arbitrary signals can be represented exactly in the
frequency domain.

2.1. Frequency domain model

Taking the affine approximation (2) into account, the DFT of the
sampled and windowed (1) equals

Na
n=0

Np
i=0

a[n,i]Φi{p} ∗

(jωk)

nY (k) + T n
y (jωk)


=

Nb
n=0

Np
i=0

b[n,i]Φi{p} ∗

(jωk)

nU (k) + T n
u (jωk)


(6)

where Φi{p} = DFT {φi(p(t))} are the DFT basis functions of the
scheduling parameter, and ∗ represents the circular convolution
product.

Assumption 4. Weierstrass approximation theorem: the basis
functions φ(p(t)) can be approximated by a polynomial in t of
degreem in the finite interval t ∈ [0, T ].

Assumption 5. The basis functions φ(p(t)) are periodic in the time
window T , and can therefore be represented exactly by their
Fourier series over the interval t ∈ [0, T ].

Theorem 6. Assumptions 4 and 5 are alternative. If either one of
them holds, the convolution of the basis functions and the polynomials
Φi{p} ∗ T n

y (jωk) andΦi{p} ∗ T n
u (jωk) are also polynomials in jωk. For the

proof, we refer to Appendix A.

Corollary 7. The polynomials T n
y (jωk) and T n

u (jωk) can be extracted
from the summation in (6), and grouped into one transient polynomial
TNT
uy (jωk) =

NT
i=0 γi (jωk)

i, of order NT = max{Na,Nb} − 1.

TNT
uy (jωk) = −

Na
n=0

Np
i=0

a[n,i]Φi{p} ∗ T n
y (jωk)

+

Nb
n=0

Np
i=0

b[n,i]Φi{p} ∗ T n
u (jωk). (7)

Computing derivatives of the signals is exact in the frequency
domain. On the other hand, the computationally complex convolu-
tion can be avoided by multiplying the signals in the time domain.
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