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a b s t r a c t

In this paper, a sliding mode control (SMC) of uncertain discrete singular systems with external
disturbances and time-varying delays is under consideration. By use of the free weighting matrices and
the Lyapunov–Krasovskii functional, a delay-dependent sufficient condition is given in strict linearmatrix
inequality (LMI) format to guarantee the sliding mode dynamics to be admissible (regular, causal and
stable). Furthermore, a proposed SMC law and an adaptive SMC law are synthesized tomake sure that the
trajectories of system can be driven to a region near equilibrium point in finite time. Finally, a numerical
example is designed to display the effectiveness of the control scheme. All these results are expected to
propose a new approach for the research on SMC of discrete time-delay singular systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Singular systems have the characteristics of preserving the
structure of practical systems and applications in robotic systems,
networks and power systems, therefore study on singular systems
is an important part in control theory and applications (Ding,
Zhu, & Zhong, 2011; Wu & Zheng, 2009). In particular, discrete
singular systems have more complicated form than regular ones
in asymptotic stability, regularity and causality, and have more
research value (Jiao, 2012; Li, Z X, H Y, Y, & Wu, 2013; Lin, Fei, &
Gao, 2012; Wu, Park, Su, & Chu, 2012; Xin, Zhang, Chun-Yu, Yong-
Yun, & Zhan, 2010).Meanwhile, time-delaywhich often takes place
in practical systems and affects the stability and performance of
systems, should be taken into account in the stability analysis of
systems (Ramakrishnan & Ray, 2013; Wu, He, She, & Liu, 2004).
By now, control of singular delay systems has attracted lots of
researchers’ attention.

Sliding mode control is widely adopted in lots of complex
and engineering systems, including time-delay systems (Chen,
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Hwang, & Tomizuka, 2002; Feng & Lam, 2012; Ginoya, Shendge, &
Phadke, 2014; Goyal, Deolia, & Sharma, 2015; Xia, Zhu, Li, Yang,
& Zhu, 2010), stochastic systems (Niu, Ho, & Lam, 2005; Wu &
Ho, 2010), and Markovian jumping systems (Ding, Zhu, Zhong,
& Zeng, 2012; Li, Wu, Shi, & Lim, 2015). As we know, system
performance may be degraded by the affection of presence of
nonlinearities and external disturbances. When nonlinearities and
external disturbances are considered, the results in Ramakrishnan
and Ray (2013) cannot be used to ascertain delay-dependent
stability. So it is necessary to aim to deal with the systems with
nonlinearities and external disturbances by SMC approach. On
the other hand, uncertainties make the system modeling more
complicated and are inevitable in practical systems (Feng & Lam,
2012; Lin et al., 2012). To solve this problem, it is essential to
use SMC which is a useful design control method to keep the
insensitivity of systems to the uncertainties on the sliding surface.

However, SMC law in Wu and Zheng (2009) was synthesized
for continuous singular systems with time-varying delays. It is
common knowledge that the designed control law would be
incapable of dealing with the problems in discrete systems,
because discrete SMC cannot be synthesized lightly by counterpart
equivalent of the continuous systems. Xin et al. (2010) focused
on SMC problem for discrete time-delay systems and sufficient
conditions were derived in the LMI framework, but these results
should not be used in singular systems for the existence of the
singular matrix E. Guo and Gao (2009) and Liu, Fu, Cai, and Song
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(2013) employed SMC method in discrete singular systems, while
the former did not consider time-varying delay and the latter was
complex in decomposing the system into two low dimensional
subsystems firstly. As far as we know, the problem of SMC for
uncertain discrete singular systems with time-varying delays and
external disturbances has not been fully studied yet and still keep
challenging.

This paper will investigate robust SMC for uncertain discrete
singular systems with time-varying delays and external distur-
bances. The main results of this paper can be summarized as fol-
lows: (i) proving that the slidingmode dynamics are regular, causal
and stable by designing a linear sliding surface for the existence of
the singular matrix E, (ii) proving that the states of system can be
driven to a region near equilibrium point in a finite time by de-
signing a SMC law and an adaptive SMC law, (iii) showing the ef-
fectiveness of the proposed approach by conducting a numerical
example.

Notations: In the whole paper, the superscript ‘‘T ’’ represents
matrix transposition, Rn denotes the n-dimensional Euclidean
space, A > 0 (<0) stands for A is a symmetric positive (negative)
definite matrix, A ≥ 0 (≤0) means that matrix A is real positive
(negative) semi-definite, A−1 indicates the inverse of matrix A, I
and 0 are used to represent an identity matrix and zero matrix of
appropriate dimensions respectively. The notation∗ is represented
the symmetric terms in a symmetric matrix.

2. Problem formulation

In this paper, the following uncertain discrete singular system
with time-varying delays and external disturbances is considered:Ex(k + 1) = (A + 1A)x(k) + (Ad + 1Ad)

× x(k − d(k)) + B(u(k) + ω(x(k), k))
x(k) = ϕ(k), k = −dM , −dM + 1, . . . , 0,

(1)

where x(k) ∈ Rn is the state vector, d(k) is the time-varying delay
with known lower and upper bounds satisfying 0 ≤ dm ≤ d(k) ≤

dM , u(k) ∈ Rm is the control input vector, ω(x(k), k) ∈ Rm is the
external disturbances vector satisfying ∥ω(x(k), k)∥ ≤ γ ∥x(k)∥,
where γ > 0 is a known constant. ϕ(k) is the initial vector
function of the system. E ∈ Rn×n may be singular, and is assumed
rank(E)= r ≤ n. A, Ad and B are known real constant matrices with
appropriate dimensions and rank(B)= m, The system parameter
uncertainties 1A and 1Ad are constrained by [1A 1Ad] =

CF(k)[D Dd], where C , D and Dd are known real constant matrices
with appropriate dimensions, and F(k) satisfies F T (k)F(k) ≤ I .

The unforced discrete singular systemwith time-varying delays
of the system (1) can be written as

Ex(k + 1) = Ax(k) + Adx(k − d(k)). (2)

Definition 1 (Jiao, 2012).

(1) The pair (E, A) is said to be regular, if det(zE − A) is not
identically zero.

(2) The pair (E, A) is said to be causal if deg(det(zE − A)) =

rank(E).
(3) For given integers dm > 0, dM > 0, the discrete singular system

(2) is said to be regular and causal for any time delay di(k)
satisfying dm ≤ di(k) ≤ dM , (i = 1, 2, . . . , n), if the pair (E, A)

is regular and causal.
(4) System (2) is said to be admissible if it is regular, causal, and

stable.

Lemma 1 (Wu & Zheng, 2009). Given a scalar ϵ > 0, Σ1 and Σ2
are assumed to be real matrices with appropriate dimensions. Then
for any matrix ∆ meeting the requirement of ∆T∆ ≤ I , the following
inequality holds:

Σ11Σ2 + (Σ11Σ2)
T

≤ ϵ−1Σ1Σ
T
1 + ϵΣT

2 Σ2. (3)

Lemma 2 (Xin et al., 2010). Given positive integers β1 and β2
meeting the requirements of 1 ≤ β1 ≤ β2, then for any constant
matrix Γ ≥ 0, Γ ∈ Rn×n, Ψ (j) ∈ Rn, the following inequality holds:

− (β2 − β1 + 1)
β2

j=β1

Ψ T (j)Γ Ψ (j)

≤ −

 β2
j=β1

Ψ (j)
T

Γ

 β2
j=β1

Ψ (j)

. (4)

Lemma 3 (Ding et al., 2011). Let X ∈ Rn×n be symmetric such
that ET

L XEL > 0 and T ∈ R(n−r)×(n−r) be nonsingular. Therefore,
XE + W TTHT is nonsingular, and its inverse can be showed by the
following equation:

(XE + W TTHT )−1
= XET

+ WTH, (5)

where X is symmetric and T is a nonsingular matrix with ET
R XER =

(ET
L XEL)

−1, T = (HTH)−1T−1(WW T )−1, where W and H are any
matrices with full row rank and satisfy WE = 0 and EH = 0,
respectively. E is decomposed as E = ELET

R with EL ∈ Rn×r and
ER ∈ Rn×r are of full column rank.

3. Main results

In this section, a linear sliding surface will be built by using the
LMI. Moreover, a reaching motion control law will be designed to
ensure the reachability of the quasi-sliding mode, and the states of
the closed-loop system can be driven to a region near equilibrium
point in finite time.

3.1. Sliding surface design

Usually, SMC design contains two steps, which includes sliding
surface design and control signal design. In this work, we design
the following switching surface function:
s(k) = GEx(k) − G(A + BK)x(k − 1), (6)
where K ∈ Rm×n is a real matrix to be designed and G ∈ Rm×n is to
be chosen such that GB is nonsingular.

It is important to note that the ideal quasi-sliding mode clearly
satisfies the following formula:
s(k + 1) = s(k) = 0. (7)
When the state trajectories of the systementer into the ideal quasi-
sliding mode, we obtain the equivalent control law of the sliding
motion from (1), (6) and (7) as:

ueq(k) = −(GB)−1G

(1A − BK)x(k)

+ (Ad + 1Ad)x(k − d(k))

− ω(x(k), k). (8)

By substituting (8) into (1) and defining G , I − B(GB)−1G for
simplicity, the sliding mode dynamics can be formulated as:
Ex(k + 1) = Ax(k) + Adx(k − d(k))
x(k) = ϕ(k), k = −dM , −dM + 1, . . . , 0, (9)

where A = A + 1A,A = A + BK , 1A = G1A, Ad = Ad + 1Ad,Ad = GAd, 1Ad = G1Ad and the uncertainties 1A and 1Ad can be
written as [1A 1Ad] = CF(k)[D Dd], whereC = GC .
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