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a b s t r a c t

The role of restorative coupling on synchronization of coupled identical harmonic oscillators is studied.
Necessary and sufficient conditions, underwhich the individual systems’ solutions converge to a common
trajectory, are presented. Through simple physical examples, themeaning and limitations of the theorems
are expounded. Also, to demonstrate their versatility, the results are extended to cover LTI passive
electrical networks. One of the extensions generalizes the well-known link between the asymptotic
stability of the synchronization subspace and the second smallest eigenvalue of the Laplacian matrix.
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1. Introduction

Studying the collective behavior of coupled harmonic oscilla-
tors has been a rewarding enterprize for researcherswho try to en-
hance their understanding on a much-encountered phenomenon
in nature: synchronization. For instance, it has been observed that
two ormore identical pendulums2 connected bymeans of dampers
eventually swing in unison even if initially they are not synchro-
nized; see Fig. 1. This outcome is not difficult to reach by intu-
ition. Since the energy of the system can only leak out through the
dampers, the pendulums should eventually settle to a constant en-
ergy state where there is no leakage. No leakage implies that the
relative velocities are all zero. In otherwords, all the pendulums are
moving at equal velocities at all times. This is only possible when
they are synchronized.

The simple example above has served as a starting point
for many significant generalizations. In Ren (2008) Ren studies
synchronization of coupled harmonic oscillators allowing time-
varying oscillator dynamics as well as time-varying and asym-
metrical dampers. The case where the damping between a pair of
oscillators becomes effective only when the two are close enough
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represented by a linear model.

is investigated in Su, Wang, and Lin (2009). The effect of nonlinear
damping is analyzed in Cai and Tuna (2010) and of impulsive
damping in Zhou, Zhang, Xiang, and Wu (2012). A sampled-
data approach is adopted in Sun, Lu, Chen, and Yu (2014) and
Zhang and Zhou (2012). Adaptive damping is covered in Su, Chen,
Wang, Wang, and Valeyev (2013) and synchronization in the pres-
ence of noisy damping is considered in Sun, Yu, Lu, and Chen
(2015). Note that all theseworks consider only dissipative coupling
(e.g. dampers). From an engineering point of view this choice is not
surprising because introducing restorative coupling (e.g. springs)
will in general deteriorate performance by causing longer and
more oscillatory transient behavior; for instance, simulation re-
sults show that the three pendulums in Fig. 2 synchronize much
less rapidly than those in Fig. 1. Perhaps this may partly explain
why collective behavior of spring-coupled oscillators has attracted
more physicists than engineers. While for the engineer a spring
is an option to couple two units, for the physicist it represents
an inherent characteristic of interaction. Relevant investigations
in the physics community go as far back, if not further, as the
work of Fermi, Pasta, and Ulam (1955) where chains of nonlinearly
coupled oscillator-like particles were studied. Due to the richness
of the subject and the increasing variety of applications in both
inanimate and biological systems, the area has maintained its
livelihood throughout many decades. See, for instance, Adato, Ar-
tar, Erramilli, andAltug (2013), Kapitaniak andKurths (2014), Kapi-
taniak, Kuzma,Wojewoda, Czolczynski, andMaistrenko (2014) and
Marcheggiani, Chacon, and Lenci (2014) for recent progress.

Through this paperwe aim to provide a comprehensive analysis
of the collective behavior of identical harmonic oscillators coupled
by both restorative and dissipative components. To the best of our
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Fig. 1. Damper-coupled pendulums.

Fig. 2. Damper- and spring-coupled pendulums.

knowledge a detailed treatment of synchronization has not yet
been reported for this setting, where two different interconnection
graphs are simultaneously at work: the graph representing
restorative coupling and the graph representing dissipative
coupling. We present a necessary and sufficient condition on the
associated pair of Laplacian matrices, under which the individual
systems tend to oscillate in unison. We also point out a certain
sufficient-only, yet easier-to-check set of conditions guaranteeing
synchronization and exercise them on some simple real-world
examples for clarity. Later, we attempt to extend our approach
to the analysis of linear electrical networks of identical oscillators
(of arbitrary order) coupled through passive impedances. For such
networks we establish a link between synchronization and the
eigenvalues of the (complex) node admittance matrix. This seems
to be a natural extension of thewell-known connectivity condition
in terms of the second smallest eigenvalue of the (real-valued)
Laplacian matrix.

2. Coupled harmonic oscillators

Consider the array of q coupled harmonic oscillators

z̈i + ω2
0zi +

q
j=1

dij(żi − żj) +

q
j=1

rij(zi − zj) = 0 (1)

(i = 1, 2, . . . , q) where zi ∈ R and ω0 > 0 is the frequency of
uncoupled oscillations. The symmetric weights dij = dji ≥ 0 and
rij = rji ≥ 0 respectively represent the dissipative and restorative
coupling between the ith and jth oscillators. Note that without
symmetry, i.e., either dij ≠ dji or rij ≠ rji, the solutions are not
guaranteed to be bounded unless some extra assumption is made.
We take dii = 0 and rii = 0. In this section and next we search
for conditions on the triple (ω0, (dij)

q
i,j=1, (rij)

q
i,j=1) underwhich the

harmonic oscillators (1) synchronize, i.e., |zi(t) − zj(t)| → 0 as
t → ∞ for all i, j and all initial conditions.

Let D, R ∈ Rq×q denote the weighted Laplacian matrices
associated to the topologies described by the dissipative coupling
(dij)

q
i,j=1 and the restorative coupling (rij)

q
i,j=1, respectively. That is,

D =




j

d1j −d12 · · · −d1q

−d21


j

d2j · · · −d2q

...
...

. . .
...

−dq1 −dq2 · · ·


j

dqj



and R is constructed similarly. Note that these matrices are sym-
metric positive semidefinite since dij = dji ≥ 0 and rij = rji ≥ 0.
In particular, we can write zTDz =


j>i dij(zi − zj)2 and zTRz =

j>i rij(zi−zj)2, where z = [z1 z2 · · · zq]T ∈ Rq. Let us now rewrite
(1) as

z̈ + ω2
0z + Dż + Rz = 0.

This, using x = [zT żT ]T ∈ R2q, allows us to obtain

ẋ =


0 Iq

−(ω2
0Iq + R) −D


x =: Φx (2)

where Iq ∈ Rq×q is the identity matrix. Employing the symmetric
positive definite matrix

P =
1
2


ω2

0Iq + R 0
0 Iq


we can establish the following Lyapunov equality

ΦTP + PΦ = −


0 0
0 D


.

Since the right hand side is negative semidefinite, each solution
x(t) of the system (2) is bounded. Moreover, by Krasovskii–LaSalle
principle, x(t) should converge to the largest invariant region con-
tained in the intersection D ∩ {x : xTPx ≤ x(0)TPx(0)} where

D :=


x :


0 0
0 D


x = 0


.

It turns out that the condition

null

R − λIq

D


⊂ range 1q for all λ ∈ C (3)

(where 1q ∈ Rq is the vector of all ones) guarantees that this largest
invariant region is contained in the synchronization subspace

S := range

1q 0
0 1q


.

In other words:

Lemma 1. Let (3) hold. Then and only then

x(t) ∈ D for all t H⇒ x(t) ∈ S for all t (4)

where x(t) is the solution of the system (2).

Proof. We first establish (3) H⇒ (4). Let x(t) = [z(t)T ż(t)T ]T be a
solution of the system (2) that identically belongs toD . Thismeans
Dż(t) ≡ 0. Also,

ẋ =


0 Iq

−(ω2
0Iq + R) 0


x −


0 0
0 D


x

=


0 Iq

−(ω2
0Iq + R) 0


x

which implies

z̈ + (ω2
0Iq + R)z = 0. (5)

Let λ1, λ2, . . . , λp be the distinct (p ≤ q) eigenvalues of R. Since
R is symmetric positive semidefinite, these eigenvalues are real
and nonnegative. Consequently, thematrix [ω2

0Iq+R] is symmetric
positive definite with eigenvalues ω2

0 + λ1, ω
2
0 + λ2, . . . , ω

2
0 + λp.

Therefore (5) implies that the solution has the form Arnold (1989,
Section 23)

z(t) = Re
p

k=1

ejωktξk (6)
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