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a b s t r a c t

The design of a controller for selective reduction of vibrations in flexible low-damped structures is
presented. The objective of the active feedback control law is to increase damping of selected modes
only, in frequency regionswhere a disturbance is likely to produce largest effect. Moreover, the stabilizing
controller is required to be band-pass, in order to filter out high-frequency sensor noise and low-frequency
accelerometer drift, and stable to increase robustness to uncertain parameters. The control design is based
on the Inverse Optimal Design approach, through the solution of a matrix Stein equation, resulting in
the solution of an optimal H∞ control problem. A grey-box identification approach of the authors is
employed for obtaining the model from experimental data or from detailed Finite Element Model (FEM)
simulators. The problem of optimal actuator/sensor location is also addressed. Detailed simulation results
are provided to show the effectiveness of the strategy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Active control of flexible structure to reduce vibrations caused
by exogenous disturbances is a topic ubiquitous in Control Theory.
Applications include structural vibration reductions in any trans-
portation system (automotive, railways, aircraft are the areasmore
involved in the study) and noise reduction, since often reducing
the vibration also reduces noise. Different control strategies have
been proposed, since the classic velocity-feedback discussed in the
seminal paper by Balas (Balas, 1982) to positive position feedback
(Fanson & Caughey, 1990). In most cases, the selection of collo-
cated sensor/actuator pairs is of paramount importance, as it ren-
ders the flexible structure minimum phase (Calafiore, Carabelli, &
Bona, 1997). Adaptive control is proposed in different papers, e.g. in
Khoshnood andMoradi (2014) adaptation is on the estimate of the
frequencies of vibration. Another methodology proposed is Sliding
Mode Control (Cavallo, De Maria, & Setola, 1999), where selective
modal rejection is considered based on a state feedback and a ro-
bust observer. Finally, optimal H2 and H∞ controllers have been
considered (Cavallo, De Maria, Natale, & Pirozzi, 2006, 2008, 2010)
for output feedback with strong stability and bandpass properties
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of the controller. The controller proposed in this paper follows the
same philosophy as Cavallo et al. (2008), namely the objective is
to produce a bandpass controller so that low frequencies can be
cut because using accelerometers as sensors, low frequency drift
has to be filtered out. Moreover, also high frequency has to be cut
to avoid sensor noise and spill-over effect (Balas, 1982) caused by
unavoidablemodel order truncation on a structure that is theoreti-
cally characterized by infinitemodes. The closed-loop design turns
out to be the solution of a suitable H∞ control problem, where
the performance index is deduced from specifications on damping
increase in selected frequency bands (Canciello & Cavallo, 2015).
The proposed approach requires that the flexible structure model
is in a suitable space-state form, that is produced by a frequency-
domain identification procedure proposed in Cavallo, De Maria,
Natale, and Pirozzi (2007). Themodel is thus obtained directly from
frequency data, either from experiments or generated by detailed
FEM software. The proposed controller, differently from Cavallo
et al. (2008), can select the modes to control, i.e., it can increase
the damping of a prescribed set of modes only. This capability re-
veals very useful when broad-band disturbances act in a frequency
region where undamped modes may magnify the effect of the dis-
turbances. Moreover, to maximize the effect of the control, the se-
lection of the optimal location of the actuator/sensor pairs is briefly
discussed. Conditions are also provided for the stability of the sta-
bilizing controller, to increase robustness and simplify practical
implementation of the closed-loop control, e.g., avoiding actuators
saturation. Detailed simulation results are presented to test the ap-
proach.
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2. The model

A flexible systemhas theoretically infinitemodes, thus practical
use always requires truncation. This issue is not trivial, as pointed
out in Anderson and Liu (1989), where it was shown that only
a frequency-weighted order reduction results into robustness
against uncertainties due to unmodelled dynamics. A commonly
used approach is to resort to FEM models, possibly of high order,
and then using reduction of the system’s order by retaining only
the first, say n, modes. Thus, a linear 2n-order dynamical system is
obtained. Another possibility, addressed in this paper, is the use of
a grey-box identification procedure.

Describing the model in modal coordinates (Cavallo et al.,
2010), the state is xT = (xT1, x

T
2) = (η1(t), . . . , ηn(t), η̇1(t), . . . ,

η̇n(t)), where ηi(t) is the generalized coordinate of the ith mode
shape, and the model is described in the classical TITO (Two
Input–Two Output) form

ẋ = Ax + Bww + Buu (1)
z = Czx + Dzuu (2)
y = Cyx + Dyww (3)

u, y ∈ Rm are control input and output, respectively, i.e., force
actuators (e.g., magnetostrictive DVA (Cavallo, Natale, Pirozzi, &
Visone, 2005)) and velocity sensors, w, z ∈ Rn+m are disturbances
and performance output, respectively.

A =


0 I

−Ω −Λ


, Bu =


0
Bu2


, Cy =


0 BT

u2,


(4)

Ω = diag(ω2
1, . . . , ω

2
n), Λ = 2diag(ζ1ω1, . . . , ζnωn) (5)

Bw =


0 0

Bw2 0


, Cz = BT

w,Dzu =


0
I


, Dyw = DT

zu. (6)

The structure of the matrices Bw and Cz has a physical justification
(Cavallo et al., 2008). Identity matrices in Dzu, Dyw result from
scaling (Skogestad & Postlethwaite, 2005). As it will be shown
in Section 3, the design of the controller heavily depends on
the structure of the model (1)–(6). The grey-box frequency
identification procedure in Cavallo et al. (2007), produces a model
with the desired structure, starting from frequency data obtained
experimentally (Cavallo et al., 2008). However, in some cases
experimental data may not be available, as in the preliminary
design phase of the mechanical structure where the location of
some of the actuators/sensors pairs has not been defined yet. In
this case a detailed structural model can be produced by any FEM
software, possibly employing multiphysics modules, to take into
account also complex geometries and smart sensors/actuators.
Then synthetic frequency data are generated and the best
mathematical model of the form (1)–(6) approximating the data
is obtained. This approach allows the designer to easily change
configurations in earlier stages of the design of the mechanical
structure, embedding control efficiency considerations into the
design of mechanical parts.

3. Controller design

The proposed controller has to be a bandpass filter, in order to
filter out low frequencies, rejecting possible drifts due to sensors,
and to filter out unmodelled high frequency dynamics, as shown
also in Cavallo et al. (2008), where the approach was validated on
both simulation and experimental data. This is accomplished by
designing a strictly proper controller withm transmission zeros at
s = 0.Moreover, the stabilizing controllermust dampenonly some
systemmodes that are locatedwithin prescribed bandwidthwhere
also disturbances are present. The following theoremaddresses the
above issues.

Theorem 1. Consider the system (1)–(6), choose n scalars 0 ≤ δi <
1, i = 1, . . . , n and let ∆ = diag(δ1, . . . , δn). Select a scalar k > 0
and let

W = k21Bu2BT
u2∆ + 2k1Λ. (7)

Assume the solution S of the Stein equation

S + 1S∆ = W (8)

to be positive semidefinite and let Bw2 = S1/2. Then the controller

K∞(s) = C∞(sI − A∞)−1B∞ (9)

where

A∞ =


0 I

−Ω −Λ∞


(10)

B∞ =


0

k∆

I − ∆2−1

Bu2


, C∞ = −


0 kBT

u2∆

. (11)

Λ∞ = Λ + kBu2BT
u2∆ − k−1S∆ + k∆


I − ∆2

−1 Bu2BT
u2 and Ω as

in (5), is band-pass, stabilizes the system (1)–(6) and is such that the
closed-loop has norm∥Tzw∥∞ < k,where Tzw = LFT(P, K∞), and LFT
denotes the Linear Fractional Transformation (Zhou & Doyle, 1998).

Proof. Preliminarily, note that the Stein equation (8) has always a
unique solution (Klein & Spreij, 2005), due to the structure of the
matrix ∆ and the selection of the δi’s. As it is well-known (Zhou &
Doyle, 1998), a controller H∞ stabilizes the system in closed loop
if: (i) H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0, (ii) J∞ ∈ dom(Ric)
and Y∞ = Ric(J∞) ≥ 0, (iii) ρ(X∞Y∞) < k2, where H∞ and J∞
are two Hamiltonian matrices, X∞ and Y∞ denote the solutions of
Riccati equations associated to the Hamiltonianmatrices, and ρ(F)
denotes the spectral radius of thematrix F . Note that the particular
structure of the Riccati equations, due to Bw = CT

z , implies block-
diagonal solutions X∞ and Y∞. In particular, the solution X∞2 of

− X∞2Λ − ΛX∞2 + B̃w2 + X∞2(k−2B̃w2 − B̃u2)X∞2 = 0 (12)

where F̃ = FF T , is X∞2 = k∆. Then the explicit solutions X∞ and
Y∞ can be deduced as

X∞ = k


Ω∆ 0
0 ∆


, Y∞ = k


Ω−1∆ 0

0 ∆


. (13)

Hence also condition (iii) is satisfied. The band-pass property of the
controller follows from Lemma 1 in Canciello and Cavallo (2015).

Remark 2. The estimate of the closed-loop norm has to be
carefully understood. Usually, high values of the closed-loop
H∞ norm are associated to poor performances. However, in the
proposed approach the performance matrices depend on k, so
comparing the closed-loop norms for different values of k does
not make sense. It is better to refer to the overall gain of the
controller to have a sensible interpretation of the effect of k. Indeed,
from (10), (11) it is clear that by increasing k both the bandwidth
and the gain (the latter, roughly, by a factor k2) are increased. Thus,
rather counter-intuitively, closed-loopperformances are enhanced
by increasing k.

The solution of the Stein equation (8) is easily computed by
using the Kronecker product and vectorization. Indeed (8) can be
rewritten as (I +∆⊗∆)vec(S) = vec(W ), whose explicit solution
is simply

sij =
1

1 + δiδj
wij, i = 1, . . . , n, j = i, . . . , n. (14)
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