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a b s t r a c t

In this paper, we study networked control systems in the presence of Denial-of-Service (DoS) attacks,
namely attacks that prevent transmissions over the communication network. The control objective is to
maximize frequency and duration of the DoS attacks under which closed-loop stability is not destroyed. A
family of impulsive controllers is proposed, which achieve the considered control objective for a general
class of DoS signals. An example is given to illustrate the proposed solution approach.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to advances in computing and communication tech-
nologies, recent years have witnessed a growing interest towards
cyber–physical systems (CPSs), i.e., systems where physical pro-
cesses aremonitored/controlled via embedded computers andnet-
works (Lee, 2008; Sha, Gopalakrishnan, Xue, & Qixin, 2008). The
concept of CPSs is extremely appealing for automation but it raises
many theoretical and practical challenges. In particular, CPSs have
triggered the attention towards networked control in the presence
of cyber attacks. In fact, unlike general-purpose computing sys-
tems where attacks limit their impact to the cyber realm, attacks
to CPSs can impact the physical world (Teixeira, Shames, Sand-
berg, & Johansson, 2015). There are varieties of cyber attacks such
as Denial-of-Service (DoS), bias injection and zero-dynamics attacks
(Teixeira et al., 2015), to name a few. The last two are examples of
attacks that affect the integrity of data,whileDoS attacks aremeant
to compromise the availability of data.

This paper is concernedwith DoS attacks.We consider a control
system in which the measurement channel is networked; the
attacker objective is to induce closed-loop instability by blocking
the plant-controller communication. Inwireless networks, this can
be realized by injecting an interference signal (jamming signal)
in the communication channel, examples being constant, random
and protocol-aware jamming (DeBruhl & Tague, 2011; Pelechrinis,
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Iliofotou, & Krishnamurthy, 2011; Tague, Li, & Poovendran, 2009).
It is known that communication failures induced by DoS can have
a profile quite different from genuine packet losses, the latter
being the case considered in the majority of studies on networked
control; in particular, failures induced by DoS need not follow a
class of probability distributions (Amin, Càrdenas, & Sastry, 2009).
This raises many new theoretical challenges from the perspective
of analysis and control design.

In Amin et al. (2009) and Gupta, Langbort, and Başar (2010),
the authors address the problem of finding optimal control and
DoS attack strategies assuming a maximum number of jamming
actions over a prescribed control horizon. A quite similar problem
is considered in Ugrinovskii and Langbort (2014), where the
authors study zero-sum games between controllers and strategic
jammers. In Shisheh Foroush and Martínez (2012, 2013), the
authors study DoS attacks in the form of pulse-width modulated
signals. The objective is to identify salient features of the DoS
signal such as maximum on/off cycle in order to de-synchronize
the transmissions from the occurrence of DoS. In De Persis
and Tesi (2014, 2015), a framework is introduced where no
assumption is made regarding the ‘‘structure’’ of the DoS attack
signal. A general model is considered that constrains DoS only
in terms of its frequency and duration. The main contribution is
an explicit characterization of DoS frequency and duration for
which closed-loop stability can be preserved by means of state-
feedback controllers. Building on this framework, extensions have
been considered dealing with dynamic controllers (Dolk, Tesi, De
Persis, & Heemels, 2015), nonlinear (De Persis & Tesi, 2016) and
distributed (Senejohnny, Tesi, & De Persis, 2015) systems, as well
as with systems where jamming attacks and genuine packet losses
coexist (Cetinkaya, Ishii, & Hayakawa, 2015).

In this paper, we study networked systems subject to DoS
attacks from the perspective of designing maximally robust
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controllers. To this end, in Section 2, we introduce a measure of
robustness against DoS, which is related to the average percentage
of transmission failures, or jamming rate (Anantharamu, Chlebus,
Kowalski, & Rokicki, 2011), that the closed-loop system can
tolerate before instability can occur. In Section 3, we then
focus on control design. From the point of view of robustness,
static feedback has inherent limitations. In fact, static feedback
generates control updates only when new process measurements
become available. Intuitively, such a limitation can be overcome
via dynamic controllers. In particular, a natural approach is to
equip the control system with prediction capabilities so as to
reconstruct the missing measurements during DoS. Inspired by
recent results on finite-time observers (Ferrante, Gouaisbaut,
Sanfelice, & Tarbouriech, 2014; Raff & Allgöwer, 2008), we
focus the attention on impulsive controllers, which make use of
dynamical observerswithmeasurements-triggered state resetting.
We show that in case of full-state measurements, this class
of controllers is indeed maximally robust in the sense that it
guarantees stability for all the DoS signals with frequency and
duration below a certain critical threshold beyond which stability
can be lost irrespective of the adopted controller. For the case of
partial-state measurements, the gap from the optimal bound is
explicitly quantified as a function of process observability index,
packets transmission rate and DoS parameters. In addition, we
show that the optimal bound can be recovered if the sensor system
is equippedwith computation capabilities and the communication
protocol is acknowledgment-based. Both continuous and sampled-
data implementations are discussed. As for the latter, in order
to preserve stability along with the same optimality bound, one
has to constrain the controller sampling rate. Such constraints are
explicitly characterized in Section 4. In Section 5, an example is
discussed,while Section6 ends thepaperwith concluding remarks.
A note on the case of delays is given in Appendix B. A preliminary
version of this paper appeared in Feng and Tesi (2016).
Notation. Given a vector v ∈ Rn, ∥v∥ is its Euclidean norm. Given
a matrix M, ∥M∥ is its spectral norm. Given two sets A and B, we
denote by B \ A the relative complement of A in B, i.e., the set of
all elements belonging to B, but not to A. Given an interval I, |I|

denotes its length, and given a set S =


k Ik consisting of a
countable union of intervals Ik, |S| denotes its Lebesgue measure.
Given a measurable function f : R≥0 → Rn and a time interval
[0, t] we denote the L∞ norm of f (·) on [0, t] by ∥ft∥∞ :=

sups∈[0,t]∥f (s)∥. Given a measurable function f : R≥0 → Rn we
say that f is bounded if its L∞ norm is finite.

2. The framework

2.1. Process dynamics and network

Consider the control architecture in Fig. 1. The process to be
controlled is given by ẋ(t)= Ax(t)+ Bu(t)+ d(t)

y(t)= Cx(t)+ n(t)
x(0)= x0

(1)

where t ∈ R≥0; x ∈ Rnx is the state, u ∈ Rnu is the control input,
and y ∈ Rny is the measurement vector; (A, B) is stabilizable;
d ∈ Rnx is an unknown bounded disturbance, while n ∈ Rny

accounts for bounded measurement and network-induced noises.
We assume that the measurement channel is networked and

subject to DoS. Let tk denote the kth transmission attempt.We shall
assume that the transmission attempts are carried out periodically
with period∆, i.e.,

tk+1 − tk = ∆, k ∈ N0 (2)

with t0 := 0.

Fig. 1. Network control framework.

2.2. Denial-of-Service

We refer to DoS as the phenomenon for which some transmis-
sion attempts may fail. We consider a general DoS model that con-
strains the attacker action in time by only posing limitations on the
frequency of DoS attacks and their duration. Let {hn}n∈N0 with h0 ≥

0 denote the sequence of DoS off/on transitions, that is, the time in-
stants at which DoS exhibits a transition from zero (transmissions
are successful) to one (transmissions are not successful). Hence,

Hn := {hn} ∪ [hn, hn + τn[ (3)

represents the nth DoS time-interval, of a length τn ∈ R≥0, over
which the network is in DoS status. If τn = 0, then Hn takes the
form of a single pulse at hn. Given τ , t ∈ R≥0 with t ≥ τ , let n(τ , t)
denote the number of DoS off/on transitions over [τ , t], and let

Ξ(τ , t) :=


n∈N0

Hn


[τ , t] (4)

be the subset of [τ , t] where the network is in DoS status.

Assumption 1 (DoS Frequency). There exist constants η ∈ R≥0 and
τD ∈ R>0 such that

n(τ , t) ≤ η +
t − τ

τD
(5)

for all τ , t ∈ R≥0 with t ≥ τ . �

Assumption 2 (DoS Duration). There exist constants κ ∈ R≥0 and
T ∈ R>1 such that

|Ξ(τ , t)| ≤ κ +
t − τ

T
(6)

for all τ , t ∈ R≥0 with t ≥ τ . �

Remark 1. Assumptions 1 and 2 do only constrain a given DoS
signal in terms of its average frequency and duration. Following
Hespanha and Morse (1999), τD can be defined as the average
dwell-time between consecutive DoS off/on transitions, while
η is the chattering bound. Assumption 2 expresses a similar
requirement with respect to the duration of DoS. It expresses
the property that, on the average, the total duration over which
communication is interrupted does not exceed a certain fraction of
time, as specified by 1/T . Like η, the constant κ plays the role of
a regularization term. It is needed because during a DoS interval,
one has |Ξ(hn, hn + τn)| = τn > τn/T . Thus κ serves to make (6)
consistent. Conditions τD > 0 and T > 1 imply that DoS cannot
occur at an infinitely fast rate or be always active. �

2.3. A robustness measure against DoS

Suppose that a transmission attempt tk falls within Hn. Due to
the finite transmission rate 1/∆, the first successful attempt after
tk need not occur exactlywhenHn is over. Thus, H̄n := Hn∪[hn+τn,
hn + τn + ∆[ yields an upper bound on the nth time interval
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