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a b s t r a c t

This work develops a measurement-driven and model-based formal verification approach, applicable to
dynamical systems with partly unknown dynamics. We provide a new principled method, grounded on
Bayesian inference and on reachability analysis respectively, to compute the confidence that a physical
system driven by external inputs and accessed under noisy measurements verifies a given property
expressed as a temporal logic formula. A case study discusses the bounded- and unbounded-time safety
verification of a partly unknown system, encompassed within a class of linear, time-invariant dynamical
models with inputs and output measurements.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The design of complex, high-tech, safety-critical systems such
as autonomous vehicles, intelligent robots, and cyber-physical in-
frastructures, demands guarantees on their correct and reliable be-
haviour. Correct functioning and reliability overmodels of systems
can be attained by the use of formal methods. Within the com-
puter sciences, the formal verification of software and hardware
has successfully led to industrially relevant and impactful applica-
tions (Clarke, 2008). Carrying the promise of a decrease in design
faults and implementation errors and of correct-by-design synthe-
sis, the use of formal methods, such as model checking (Clarke,
2008), has become a standard in the avionics, automotive, and rail-
way industries (Vardi, 2009). Life sciences (Belta, Habets, & Kumar,
2002; Del Vecchio & Sontag, 2009) and robotic applications (Belta
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et al., 2007; Burdick et al., 2007) have also recently benefited by
the application of these successful techniques from the computer
sciences: this has required a shift from finite-state to physical and
cyber-physical models, which are of practical use in nowadays sci-
ence and technology (Lee, 2008; Tabuada, 2009).

The strength of formal techniques, such as model checking,
is bound to the fundamental requirement of having access to a
given model, obtained from the knowledge of the behaviour of
the underlying system of interest. In practice, for most physical
systems the dynamical behaviour is known only in part: this holds
in particular with biological systems (Abate, Hillen, & Wahl, 2012)
or with classes of engineered systems where, as a consequence,
the use of uncertain control models built from data is a common
practice (Hjalmarsson, 2005). As an example consider a battery
cell to be placed in a car, of which we have only a partial
model but know the demand limits that will be raised while in
operation. Before installing the battery we can probe and measure
its dynamics, and wish to verify that the battery will never heat up
excessively under the demanded operational limits.

Only limitedworkwithin the formalmethods community deals
with the verification of models with partly unknown dynamics.
Classical results (Batt, Belta, & Weiss, 2007; Henzinger & Wong-
Toi, 1996) consider verification problems for non-stochastic mod-
els described by differential equations with bounded paramet-
ric uncertainty. Similarly, but for continuous-time probabilistic
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models, (Bortolussi & Sanguinetti, 2014; Brim, Češka, Dražan, &
Šafránek, 2013) explore the parameter space with the objective of
model verification (respectively statistical or probabilistic). When-
ever full state measurements of the system are available, Statis-
tical Model Checking (SMC) (Legay, Delahaye, & Bensalem, 2010;
Sen, Viswanathan, &Agha, 2004b) replaces numericalmodel-based
procedures with empirical testing of formalised properties. SMC is
limited to fully observable stochastic systemswith little or no non-
determinism, andmay require the gathering a large set ofmeasure-
ments. Extensions towards the inclusion of non-determinism have
been studied in Henriques, Martins, Zuliani, Platzer, and Clarke
(2012) and Legay and Sedwards (2013), with preliminary steps to-
wards Markov decision processes. Related to SMC techniques, but
bound to finite state models, Chen and Nielsen (2012), Mao and
Jaeger (2012) and Sen, Viswanathan, andAgha (2004a) assume that
the system is encompassed by a finite-state Markov chain and effi-
ciently use data to learn the corresponding model and to verify it.
Similarly, Bartocci, Bortolussi, and Sanguinetti (2013) and Borto-
lussi and Sanguinetti (2013) employ machine learning techniques
to infer finite-stateMarkovmodels fromdata over given logical for-
mulae.

An alternative approach, allowing both partly unknown dy-
namics over uncountable (continuous) variables and noisy output
measurements, is the usage of a Bayesian framework relating the
confidence in a formal property to the uncertainty of a model built
fromdata.When applied on nonlinearly parameterised, linear time
invariant (LTI) models this approach introduces heavy computa-
tional issues, which can only be mitigated via statistical methods
(Gyori, Paulin, & Palaniappan, 2014). Instead, in order to obtain
reliable and numerical solutions, we propose the use of linearly pa-
rameterised model sets defined through orthonormal basis func-
tions to represent these partially unknown systems. This is a
broadly used framework in system identification (Heuberger, Van
den Hof, & Wahlberg, 2005; Hjalmarsson, 2005): while maintain-
ing the beneficial computational aspects of linear parameterisa-
tions, the choice of orthonormal basis functions allows for the
incorporation of prior knowledge on the system behaviour. Prac-
tically, this has been widely used for the modelling of physical sys-
tems, such as the thermal dynamics of buildings (Virk & Loveday,
1994).

This work investigates the verification of temporal logic prop-
erties over partially unknown systems, using both prior modelling
knowledge and data drawn from the system in a Bayesian setting.
Building on Haesaert, Van den Hof, and Abate (2015a,b), we pro-
vide a complete framework and newly extend the modelling class
in Haesaert et al. (2015a) to multi-input multi-output models. The
focus of this work is further set apart from Haesaert et al. (2015b),
which explored the design of experiments to ameliorate the
data-driven verification procedure.

2. General framework and problem statement

In this section we overview a new methodology to assess the
confidence in whether a system S satisfies a given specification ψ ,
formulated in a suitable temporal logic, by integrating the partial
knowledge of the system dynamics with data obtained from a
measurement setup around the system.

Let us further clarify this framework. Let us denote with
S a physical system, or equivalently its associated dynamical
behaviour. A signal input u(t) ∈ U, t ∈ N, captures how the
environment acts on the system. Similarly, an output signal y0(t) ∈

Y indicates how the system interacts with the environment, or
alternatively how the system can bemeasured. Note that the input
and output signals are assumed to take values over continuous
domains. The system dynamics can be described via mathematical
models,which quantify the behavioural relation between its inputs

Fig. 1. System (smaller red box) and measurement setup (grey box). In the
measurement setup the output ỹ(t)ex includes the system output y0(t)ex and the
measurement noise e(t). Data collected from experiments comprises the input
u(t)ex and the measured output ỹ(t)ex signals.

and outputs. The knowledge of the behaviour of the system is
often limited or uncertain, making it impossible to analyse its
dynamics bymeans of a ‘‘true’’model. In this case, a-priori available
knowledge allows to construct amodel setGwith elementsM ∈ G:
this model class encompasses the uncertainty on the underlying
system by means of a parameterisation θ ∈ Θ,G = {M(θ)|θ ∈

Θ}. The unknown ‘‘true’’ model M(θ0) representing S, is assumed
to be an element of G, namely θ0 ∈ Θ . Model sets G obtained
through first principles and with unknown parameters adhere to
this standard setup.

Samples can be drawn from the underlying physical system
via a measurement setup, as depicted in Fig. 1. An experiment
consists of a finite number (Ns) of input–output samples drawn
from the system, and is denoted by ZNs = {u(t)ex, ỹ(t)ex}

Ns
t=1,

where u(t)ex ∈ U (in general a continuous domain) is the input
for the experiment and ỹ(t)ex is a (possibly noisy) measurement
of y0(t)ex. In general, the measurement noise can enter non-
additively and be a realisation of a stationary stochastic process.1
We assume that at the beginning of the measurement procedure
(say at t = 0), the initial condition of the system, encompassed
by the initial state x(0)ex of models in G, is either known, or, when
not known, has a structured uncertainty distribution that is based
on the knowledge of past inputs and/or outputs. As reasonable, we
implicitly consider only well-defined problems, such that for any
model M(θ) representing the system, given an input signal u(t)ex
and an (uncertainty distribution for) x(0)ex, the probability density
distribution of the measured signal can be fully characterised.

The end objective is to analyse the behaviour of system S. We
consider properties encoded as specificationsψ and expressed in a
temporal logic of choice (to be detailed shortly). Let us remark that
the behaviour of S to be analysed is bound to a set of operating
conditions that are pertinent to the verification problem and that
will be indexed by ‘‘ver ’’: this comprises the set of possible input
signals u(t)ver (e.g., a white or coloured noise signal, or a non-
deterministic signal u(t)ver ∈ Uver ⊆ U), and of the set of initial
states x(0)ver ∈ Xver for the mathematical models M(θ) reflecting
past inputs and/or outputs of the system. The system satisfies a
property if the ‘‘true’’ model representing the system satisfies the
property, namely S � ψ if and only ifM(θ0) � ψ .

In thisworkwe consider the satisfaction of a propertyM(θ) � ψ
as a binary-valued mapping from the parameter space Θ . More
generally, when in addition to the measurements of the system
also its internal transitions are disturbed by stochastic noise
(known as process noise), then property satisfaction is a mapping
from the parameter space Θ to the interval [0, 1], and quantifies
the probability that the model M(θ) satisfies the property. This
mapping generalises the definition of the satisfaction function
discussed in Bortolussi and Sanguinetti (2014), and is now stated
as follows.

1 Notice that the operating conditions of the experiment, that is the input signal
u(t)ex , the initial state x(0)ex , and themeasurements ỹ(t)ex , have been indexedwith
‘‘ex’’ to distinguish them from the conditions of interest for verification (‘‘ver ’’), to
be discussed shortly.
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