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a b s t r a c t

This paper deals with the identification of errors-in-variables (EIV) models corrupted by additive and
uncorrelated white Gaussian noises when the noise-free input is an arbitrary signal, not required to be
periodic. In particular, a frequency domainmaximum likelihood (ML) estimator is proposed and analyzed
in some detail. As some other EIV estimators, this method assumes that the ratio of the noise variances
is known. The estimation problem is formulated in the frequency domain. It is shown that the parameter
estimates are consistent. An explicit algorithm for computing the asymptotic covariance matrix of the
parameter estimates is derived. The possibility to effectively use lowpass filtered data by using only part
of the frequency domain is discussed, analyzed and illustrated.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the problemof identifying a linear dynamic system
from noisy input–output measurements is addressed. System
representations where both inputs and outputs are affected by
additive errors are called errors-in-variables (EIV)models and play
an important role in several engineering and other applications,
Van Huffel (1997), Van Huffel and Lemmerling (2002) and Zhang,
Pintelon, and Schoukens (2013). Many system identification
methods have been proposed for the EIV problems. For some
surveys in the field, see Söderström (2007, 2012) and Guidorzi,
Diversi, and Soverini (2008).

In many EIV contexts the additive noises are assumed as white.
In these cases, if the assumptions of Gaussianity are fulfilled, it
is feasible to use a maximum likelihood (ML) approach. In this
work the EIV ML problem is addressed by using frequency domain
techniques, when the noise-free input is an arbitrary sequence and
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the noise variance ratio is known. The frequency domain approach
has some special features, not present in time domain methods. In
particular, filtering can be reduced to the selection of appropriate
frequencies in a limited band of the signal spectrum. Moreover,
continuous-time and discrete-time models can be handled with
equal difficulties, McKelvey (2002) and Ljung (1999). From a
theoretic point of view, there is a full equivalence between time
and frequency domain identification methods, also for finite data
records, Agüero, Yuz, Goodwin, and Delgado (2010). Some ideas
of the approach described here were first presented in Soverini
and Söderström (2014). The derivation here is quite different and
much more direct. Further, this paper also contains analysis of the
consistency and accuracy properties of the parameter estimates. In
its approach the paper differs from other previous work on an ML
formulation of the EIV problem in the time and frequency domains,
cf. Diversi, Guidorzi, and Soverini (2007), Pintelon and Schoukens
(2007, 2012), see also Zhang et al. (2013). The relation of these
papers to the present one is discussed in Section 2, see Remark 2.1
and the discussion thereafter.

The organization of the paper is as follows. Section 2 defines
the EIV identification problem in frequency domain. Section 3 de-
scribes the EIV set up in the frequency domain, while Section 4
presents the ML solution. Section 5 analyses the properties of the
parameter estimates. In Section 6 the properties of the proposed
ML algorithm are verified by means of Monte Carlo simulations.
Finally some concluding remarks are reported in Section 7.
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Fig. 1. The basic setup for a dynamic errors-in-variables problem.

2. Statement of the problem

Consider the linear time-invariant SISO system described in
Fig. 1. The noise-free input and output u0(t), y0(t) are linked by
the difference equation

A(q−1) y0(t) = B(q−1) u0(t), (1)

where A(q−1) and B(q−1) are polynomials in the backward shift
operator q−1

A(q−1) = 1 + a1 q−1
+ · · · + ana q

−na

B(q−1) = b0 + b1 q−1
+ · · · + bnb q

−nb .
(2)

In the EIV environment the input and output measurements are
assumed to be corrupted by additive noise so that the available
observations are

u(t) = u0(t)+ ũ(t) (3)
y(t) = y0(t)+ ỹ(t). (4)

In the sequel, the following assumptions will be considered as
satisfied.

A1. The system (1) is asymptotically stable.
A2. A(q−1) and B(q−1) do not share any common factor.
A3. The polynomial degrees na and nb are assumed to be a priori

known.
A4. The noiseless input u0(t) is a zero-mean ergodic process and

is persistently exciting of sufficiently high order.
A5. ũ(t) and ỹ(t) are mutually uncorrelated zero-mean Gaussian

white processes with variances λu and λy, respectively.
A6. ũ(t) and ỹ(t) are uncorrelated with the noise-free input u0(t).

Let {u(t)}N−1
t=0 and {y(t)}N−1

t=0 be a set of input and output
observations at N equidistant time instants. The corresponding
Discrete Fourier Transforms (DFTs) are defined as

U(ωk) =
1

√
N

N−1
t=0

u(t) e−iωkt , (5)

Y (ωk) =
1

√
N

N−1
t=0

y(t) e−iωkt , (6)

where ωk = 2πk/N and k = 0, . . . ,N − 1. In frequency domain,
the problem under investigation can be stated as follows.

Problem 1. Let U(ωk), Y (ωk) be a set of noisy measurements
generated by an EIV system of type (1)–(4), under Assumptions
A1–A6, where ωk = 2πk/N and k = 0, . . . ,N − 1. Estimate
the system parameters ai (i = 1, . . . , na), bi (i = 0, . . . , nb) and
possibly the noise variances λu, λy.

Remark 2.1. Under the previous Assumptions A1–A6, the system
is not identifiable in the very general case. To achieve identifiabil-
ity, one has to add one of the following assumptions.

(1) The properties of the noise-free input are given by a model of
finite order, for example an ARMA model.

(2) The noise-free input is known to be periodic. Two periods of
the data are then sufficient.

(3) The ratio of the noise variances is known.

One can always debate which assumption is more realistic or more
general than the others.

The first assumption is applied in the so called joint output
method, Söderström (1981). A frequency domain variant is
developed in Pintelon and Schoukens (2007).

A reason why the last two assumptions are quite similar in
character goes as follows: if the second assumption applies, by
subtracting data of one period from the other period, one gets
an estimate of the pure noisy data, and then the noise variances
can be estimated separately. This is essentially the SML approach
proposed in Schoukens, Pintelon, Vandersteen, and Guillaume
(1997).

There are also several methods in the literature where none
of the conditions (1)–(3) is imposed, but then the information
in the data is not fully exploited. Still, consistency is achieved.
Examples of such methods are the instrumental variable method,
the generalized instrumental variable method, Söderström (2011),
including its special cases bias-eliminating least squares and
the Frisch scheme, and the covariance matching approach,
Söderström, Mossberg, and Hong (2009).

Methods for EIV identification do also differ in what quantities
are estimated in addition to the polynomial coefficients in (2).
Both in Zhang et al. (2013) and in this paper the realization
u0(0), . . . , u0(N − 1) of the noiseless input is regarded as a
deterministic sequence to be estimated.

In this paper the following additional assumption is applied,
with the aim of deriving, exploiting and analyzing the frequency
domain ML estimator.

A7. The noise variances λu and λy are unknown but their ratio
ρ = λy/λu is assumed as known, with 0 < ρ < ∞.

For situations where ũ(t) and ỹ(t) are due to sensor noise, it
can be possible to obtain separate measurement data of the noise
only. From such records, estimates of λu and λy (and also ρ) can be
obtained.

Remark 2.2. It is worth noting that Assumption A7 is necessary
also for estimators based on total least squares (TLS), to be
consistent, cf. Cadzow and Solomon (1986), Van Huffel (1997) and
Van Huffel and Lemmerling (2002).

The paper (Zhang et al., 2013) uses frequency domainproperties
as in this paper, and both papers take effects of transients into
account. While this paper deals fully with the ML estimation, the
estimation method considered in Zhang et al. (2013) is different
and only partly based on equations derived from the gradient of
the likelihood function.

The following frequency domain property is worth recalling.

Property. Let x(t) be an arbitrary signal. Consider the frequency
domain data X(ωk) , Xk, k = 0, . . . ,N − 1 of x(t), see (5). The
number of data N is usually even, however the following consideration
holds also when N is odd. It can be observed that

X(ωN−1−k) =
1

√
N

N−1
t=0

x(t) e−i N−1−k
N 2π t

=
1

√
N

N−1
t=0

x(t) e−i−(1+k)
N 2π t

= X∗(ω1+k) , (7)

where X∗(·) is the conjugate of X(·). The conclusion is that it is
enough to consider half of the sequence X0, . . . , XN−1, since the
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