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a b s t r a c t

Linear single-input single-output discrete-time systems P(z) with unknown parameters, order and
relative degree are considered, which are perturbed by biased sinusoidal disturbances. Under the
assumption that the disturbance frequencies, the sign of the static gain P(1), the sign of either Re[P(ejωi )]
or Im[P(ejωi )], for any disturbance frequency ωi, are known, linear disturbance compensators are
proposed which achieve exponential disturbance suppression. Such results are then locally extended to
the case of disturbances with unknown frequencies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

The problem of disturbance rejection or disturbance attenua-
tion on the controlled output of dynamical systems is one of the
main problemswhich arise in control applications. The disturbance
signal may be of stochastic type or of deterministic type and in the
latter case very often it can be modeled as the output of an ex-
ogenous system (exosystem). For example, sinusoidal disturbances
and periodic disturbances (with a limited number of harmonics)
belong to such a class and are largely found in practical control
problems (Ben Amara, Kabamba, & Ulsoy, 1999; Hong, Du, Tee, &
Ge, 2010; Landau, Alma, Constantinescu, Martinez, & Noe, 2011).
The disturbances may be either of known frequencies or of un-
known (or partially known) frequencies so that the uncertainty on
the exosystemmay refer only to the initial conditions or also to the
exosystem parameters.

Even though a large amount of papers is available for
continuous-time systems (see Brown & Zhang, 2004; Esbrook,
Tan, & Khalil, 2013; Fedele & Ferrise, 2013; Pigg & Bodson, 2010
and references contained therein), only a few are available for
the discrete-time counterpart. Since the control algorithms are
generally discretized to obtain digital controllers, the study of
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discrete-time control laws is of great interest. In fact, if we consider
the linear scalar system

ẋ = −x + u + d(t) (1)

and the disturbance compensator

η̇1 = η2 + 2x

η̇2 = −ω2η1

u = −η1 (2)

in which ω is the frequency of the sinusoidal disturbance d(t) =

d0 sin(ωt + φ), it is easy to see that the closed loop system is
asymptotically stable. However, if an Euler first-order discretized
version of (2) is applied to system (1), an easy computation shows
that when d = 0 the zero-order hold discrete-time system
obtained from (1), in closed-loopwith the Euler discretized version
of (2) is unstable, for some sampling time T and for some frequency
ω. For example, for ω = 3, T = 0.1 we obtain the following
eigenvalues: (−0.8289,−0.0856 ± j3.2941) in continuous-time,
(0.9205, 0.9921 ± j0.3282) in discrete-time.

The most interesting contributions to the solution of the
disturbance rejection problem for discrete-time linear systems
are discussed in the sequel. Under the assumption that the
plant model is known while the disturbance model is of known
order but unknown, two adaptive regulators are proposed in
Landau et al. (2011). In Hoagg, Santillo, and Bernstein (2008), the
parameters of the process and those of the exosystemare supposed
to be unknown and a fully adaptive control law is proposed
for minimum-phase multi-input multi-output linear systems
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with known relative degree. The proposed controller achieves
global asymptotic output error vanishing but the convergence is
not exponential, so that robustness with respect to unmodeled
disturbances is not guaranteed. The approach followed in Guo
and Bodson (2009) consists in estimating amplitudes, phases and
frequencies of the unknown periodic disturbance so that it can
be compensated by the control input. Even in this case, the
plant model is required to be known. In Marino and Santosuosso
(2011), an exponentially converging global regulator is designed
for known systems affected by an unknown number (with known
upper bound) of sinusoidal disturbances. Several contributions
referring to a benchmark example are given in Airimitoaie,
Castellanos Silva, and Landau (2013), Aranovskiy and Freidovich
(2013), Castellanos Silva, Landau, and Airimitoaie (2013), Chen and
Tomizuka (2013), de Callafon and Fang (2013), Karimi and Emedi
(2013) and Wu and Ben Amara (2013). All of them assume that
the benchmark is accurately identified and robustness to model
uncertainties are analyzed only for the case of known frequencies
in Aranovskiy and Freidovich (2013) and de Callafon and Fang
(2013), where it is shown that stability is preserved for a little
amount of parameter uncertainties. In Jafari, Ioannou, Fitzpatrick,
and Wang (2015), small model uncertainties are allowed when
the disturbance frequencies are known, while ultimately bounded
error is guaranteed in the case of unknown frequencies.

The assumption of known plant model is very restrictive
since the plant parameters may be different from the nominal
ones for several reasons: different operating conditions, abruptly
changes as a consequence of faults, tolerance range allowed by
manufacturing industries. For instance, the system

y(z) =
(1 + z)[u(z)+ d(z)]
(z − 0.1)(z − 0.5)

(3)

may reduce to

y(z) =
u(z)+ (1 + z)d(z)
(z − 0.1)(z − 0.5)

(4)

as a consequence of sensor/actuator fault, so that even its
relative degree may be different (see further details in Section 5).
In this paper, motivated by the recent results obtained for
linear continuous-time systems (Marino & Tomei, 2015, 2016),
we consider single-input single-output linear stable discrete-
time systems whose order, relative degree and parameters
are completely unknown, perturbed by additive biased multi-
sinusoidal disturbances. However, the sign of the static gain P(1) of
the transfer function P(z) along with either the sign of Re[P(ejωi)]
or the sign of Im[P(ejωi)], for any disturbance frequency ωi, must
be known. The problem we are considering is precisely stated in
the following definition.

Definition 1.1 (Disturbance Rejection Problem). Consider the linear
system

x(k + 1) = Ax(k)+ B[u(k)+ d(k)], x(0) = x0
y(k) = Cx(k)+ D[u(k)+ d(k)] (5)

in which x ∈ Rn, y ∈ R, u ∈ R, d(k) = d0 +
q

i=1 di cos(ΩikT +φi)
is a matching biased multi-sinusoidal disturbance, with di ≥ 0,
0 ≤ i ≤ q, Ωi > 0, 1 ≤ i ≤ q, 0 ≤ φi < 2π , 1 ≤ i ≤ q and T
being the sampling time. Assume that A is a Schurmatrix (i.e. all its
eigenvalues are strictly inside the unit disk) and denote by

P(z) = C(zI − A)−1B + D (6)

the transfer function between u(z) and y(z). The disturbance
rejection problem is solvable for the linear system (5), if there
exists a linear output feedback compensator (see Fig. 1)

ξ(k + 1) = Auξ(k)+ Buy(k), ξ(0) = ξ0

Fig. 1. Block diagram of the disturbance compensator.

u(k) = Cuξ(k)+ Duy(k) (7)

such that for the closed-loop system (5), (7), the state vector
x(k) and the disturbance compensator error u(k) + d(k) converge
exponentially to zero as k tends to infinity, for any initial condition
(x0, ξ0). �

Remark 1.1. Note that also systems with not-matching distur-
bances can be reduced to the form (5). In fact, consider the system

x(k + 1) = Ax(k)+ Bu(k)+ Md̄(k)

y(k) = Cx(k)+ Du(k)+ Nd̄(k) (8)

inwhich d̄(k) is a biasedmulti-sinusoidal disturbance. Assume that
an input ur(k) exists such that (for suitable initial conditions) the
disturbance has no effect on the output, i.e.

xr(k + 1) = Axr(k)+ Bur(k)+ Md̄(k)

0 = Cxr(k)+ Dur(k)+ Nd̄(k). (9)

Defining x̃ = x − xr , from (8) and (9), we obtain

x̃(k + 1) = Ax̃(k)+ B[u(k)− ur(k)]
y(k) = Cx̃(k)+ D[u(k)− ur(k)]. (10)

so that by setting d(k) = −ur(k), we re-obtain (5). �

We show that a copy of the disturbance exosystem (internal
model, Francis & Wonham, 1976) driven by the output error
fed back by a sufficiently small gain is sufficient to achieve
global exponential disturbance rejection. We begin in Section 2 by
considering constant and pure sinusoidal disturbances while the
general case of biased multi-sinusoidal disturbances is addressed
in Section 3. In Section 4, we consider disturbances with unknown
frequencies. A local solution for the disturbance rejection problem
is proposed in which the unknown frequencies are estimated by a
first order updating difference equation for each frequency to be
estimated. By means of the averaging method, local converging
properties are demonstrated. Finally, two numerical examples
are simulated in Section 5 to illustrate the performance of the
proposed compensator: the first one is referred to a system with
variable relative degree as a consequence of fault; the second one
deals with a learning problem in the case of unknown period.

2. Constant and single-frequency disturbances

In this section, some preliminary results are stated and
demonstrated. In particular, the problem of disturbance rejection
is examined when disturbances are either constant or purely
sinusoidal. The constructive proofs of the theorems proposed in
this section will be useful to gain a better understanding of the
more complex results given in the next section.

Theorem 2.1 (Constant Disturbance). Consider the linear system (5)
with d(k) a constant disturbance. Assume that P(1) ≠ 0 with known
sign. Then, there exists a g∗ > 0 such that for any 0 < g ≤ g∗, the
dynamic output feedback compensator

η̂(k + 1) = η̂(k)+ g sign[P(1)]y(k)
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