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a b s t r a c t

Recent contributions have framed linear system identification as a nonparametric regularized inverse
problem. Relying on ℓ2-type regularizationwhich accounts for the stability and smoothness of the impulse
response to be estimated, these approaches have been shown to be competitive w.r.t. classical parametric
methods. In this paper, adopting Maximum Entropy arguments, we derive a new ℓ2 penalty; to do so we
exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by
the McMillan degree, stability and smoothness of the identified models. As a special case, we recover
the nuclear norm penalty on the squared block Hankel matrix. In contrast with the previous literature
on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters,
which are iteratively updated through marginal likelihood maximization; constraining the structure of
the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our
estimator. To optimize the marginal likelihood, we adapt a Scaled Gradient Projection (SGP) algorithm
which is proved to be significantly computationally cheaper than other first and second order off-the-
shelf optimizationmethods. The paper also contains an extensive comparison withmany state-of-the-art
methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Although linear system identification is sometimes considered
a mature field, with a wide and solid literature summarized in the
well known textbooks (Ljung, 1999; Söderström & Stoica, 1989),
the recent developments on regularization based methods have
brought new insights and opened new avenues.

The most common ‘‘classical’’ approaches are parametric
Prediction ErrorMethods (PEM) (Ljung, 1999; Söderström& Stoica,
1989) and subspace methods (Chiuso & Picci, 2003; Larimore,
1983; Lindquist & Picci, 2015; Van Overschee & De Moor,
1996; Verhaegen, 1994). These techniques require that a model
complexity (the order hereon) is fixed, and thus estimated, first.
As an alternative to the standard parametric approach, recent
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literature has proposed a Bayesian perspective, leading to a class of
regularized methods (Chen, Andersen, Ljung, Chiuso, & Pillonetto,
2014; Chen, Ohlsson, & Ljung, 2012; Pillonetto, Chiuso, & De
Nicolao, 2011; Pillonetto & De Nicolao, 2010; Pillonetto, Dinuzzo,
Chen, De Nicolao, & Ljung, 2014; Zorzi & Chiuso, 2015, 2017). The
use of Bayesian inference is not new in the field of identification
and time-series estimation: early works on this topic appeared in
the late ‘70, early ‘80 (Akaike, 1979; Doan, Litterman, & Sims, 1984;
Goodwin, Gevers, & Ninness, 1992; Kitagawa & Gersh, 1985); see
Chiuso (2016) for an overview.

The Bayesian paradigm considers the impulse response as a
stochastic process whose prior distribution describes the model
class in a flexible manner. This allows to face the so-called
bias/variance trade-off by jointly performing estimation andmodel
selection.

In Chen et al. (2012), Pillonetto and De Nicolao (2010) and Pil-
lonetto et al. (2011) prior distributions, which can also be derived
using Maximum Entropy arguments (Carli, Chen, & Ljung, 2014;
Chen et al., 2016; De Nicolao, Ferrari-Trecate, & Lecchini, 1998; Pil-
lonetto & De Nicolao, 2011), are designed to encode smoothness
and stability of the impulse response to be estimated, leading to
ℓ2-type penalties so that closed-form solutions are available.

In this paper,we focus on the identification ofMulti Input–Multi
Output (MIMO) systems, where matrix impulse responses have
to be identified. Similar problems are encountered in multi-task
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learningwhere onewould like to simultaneously estimatemultiple
functions while also exploiting their mutual information. To this
aim Caruana (1997), Bakker and Heskes (2003), Micchelli and
Pontil (2005), Evgeniou, Micchelli, and Pontil (2005) and Pillonetto
and Dinuzzo (2010) have considered vector-valued kernels which
account for the smoothness of the functions to be estimated. In
the identification of finite dimensional linear MIMO systems, the
coupling between different input–output channels is captured by
the Hankel matrix, which has finite rank equal to the McMillan
degree of the system.

The Hankel matrix and its properties have already been thor-
oughly exploited in subspace methods, where also Vector AutoRe-
gressive Models (VARX) estimated under the PEM framework play
a fundamental role; in fact, it has been shown in Chiuso (2007b)
(see also Chiuso, 2007a, 2010) that certain subspace methods can
be seen as estimation of a long (i.e. ‘‘nonparametric’’ in the con-
text of this paper) VARXmodel followed by a suitable (data based)
model reduction step. This paper goes one step further, bymerging
these two steps in one. While subspace methods reduce the order
of the estimated VARX model via a model reduction step, in this
paper regularization takes care of both stability and ‘‘complexity’’
(in terms of McMillan degree) at once, while estimating the VARX
model itself.

Within this framework, our recent works (Prando & Chiuso,
2015; Prando, Chiuso, & Pillonetto, 2014; Prando, Pillonetto, &
Chiuso, 2015) have attempted to merge the benefits of accounting
for both stability/smoothness and complexity when building prior
models. The main contributions of this work, w.r.t. the above
referenced papers are as follows: (i) development, by means of
MaxEnt arguments, of a new kernel encoding both complexity,
as measured by its McMillan degree, as well as smoothness and
stability; (ii) a new tailored Scaled Gradient Projection (SGP)
method for marginal likelihood optimization, inspired by the one
introduced in Bonettini, Chiuso, and Prato (2015); (iii) an extensive
simulation study, where the proposed identification algorithm
is compared with classical and state-of-the art identification
methods, including PEM (Ljung, 1999), N4SID (Van Overschee &
De Moor, 1996), Stable Spline (Pillonetto et al., 2011), reweighted
nuclear norm-based algorithms (Mohan & Fazel, 2010) and
regularized subspace methods (Verhaegen & Hansson, 2014).

The connection of the procedure introduced in this paper with
the existing literature is now briefly discussed. Further details can
be found in the Appendices. The prior distribution here introduced
leads, as a special case, to an Hankel nuclear norm penalty,
an heuristic related to that proposed in Fazel, Hindi, and Boyd
(2001) as a convex surrogate to the rank function. In the system
identification literature, the nuclear norm heuristic has also been
applied in the context of subspace identification (Hansson, Liu,
& Vandenberghe, 2012; Liu & Vandenberghe, 2009; Verhaegen
& Hansson, 2014), even in the presence of incomplete datasets
(Liu, Hansson, & Vandenberghe, 2013), to control the order of
the estimated model. PEM methods equipped with nuclear norm
penalties on the Hankel matrix built with the Markov parameters
have also been considered (Grossmann, Jones, & Morari, 2009;
Hjalmarsson, Welsh, & Rojas, 2012). Refer to (Prando et al., 2015)
for a brief survey on the topic.

However, direct use of nuclear norm (or atomic) penalties
may lead to undesired behaviour, as suggested and studied in
Pillonetto, Chen, Chiuso, Ljung, and De Nicolao (2016), due to the
fact that nuclear norm is not able alone to guarantee stability
and smoothness of the estimated impulse responses. To address
this limitation, Chiuso, Chen, Ljung, and Pillonetto (2013) already
suggested the combination of the stability/smoothness penalty
with the nuclear norm one; differently from the prior presented
in this paper, the formulation given in Chiuso et al. (2013) did not
allow to adopt marginal likelihood maximization to estimate the
regularization parameters.

Exploiting the structure of the prior distribution used in
this paper, we design an iterative procedure which alternatively
updates the impulse response estimate and the hyper-parameters
defining the prior. Our algorithm, which is related to iterative
reweighted methods used in compressed sensing and signal
processing (Candes, Wakin, & Boyd, 2008; Chartrand & Yin,
2008; Daubechies, Devore, Fornasier, & Güntürk, 2010; Fornasier,
Rauhut, & Ward, 2011; Mohan & Fazel, 2012) and so-called Sparse
Bayesian Learning (SBL) (Tipping & Smola, 2001;Wipf & Nagarajan,
2010), differs from the previous literature in that the regularization
matrix takes on a very special structure, described by few hyper-
parameters. With this special structure, the weights update does
not admit a closed-form solution and thus direct optimization of
the marginal likelihood needs to be performed.

While a clear-cut conclusion in terms of relative performance
cannot be drawn at the moment, it is fair to say that (a) the new
method developed in this paper outperforms the classical ‘‘Stable
Spline’’ (Pillonetto et al., 2011), especially when dealing with
MIMO systems; (b) the new method outperforms a Reweighted
Nuclear Norm algorithm in certain scenarios (e.g. a ‘‘mildly-
resonant’’ fourth order system) while performing comparably in
others (e.g. randomly generated ‘‘large’’ MIMO systems).

The paper is organized as follows. Section 2 introduces the
problem and Section 3 briefly frames system identification in the
context of Bayesian estimation. In Section 4, Maximum Entropy
arguments are used to derive a family of prior distributions.
Section 5 illustrates our algorithm while Section 6 describes
the adaptation of a Scaled Gradient Projection method, which is
used to solve the marginal likelihood optimization problem. An
extensive experimental study is conducted in Section 7, while
some concluding remarks are drawn in Section 8.
Notation: In the following, R, R+ := [0,∞), Z and N, respectively,
denote the set of real, positive real, integers and natural numbers.
Rn and Rm×n, respectively, indicate the set of n-dimensional real
vectors, and m × n real matrices. The transpose of A ∈ Rm×n is
denoted as A⊤. 0n, 0m×n and In, respectively, represent the zero
vector in Rn, the zero matrix in Rm×n and the n × n identity
matrix. The symbol ⊗ denotes the Kronecker product, N (µ, σ )
the Gaussian distribution with mean µ and variance σ . Given v ∈
Rn, diag(v) is a diagonalmatrix of sizen×nwith the diagonal given
by v. Given matrices Vi ∈ Rmi×ni , i = 1, .., n, blkdiag(V1, . . . , Vn)
denotes the block-diagonal matrix of size (m1 + · · · + mn) ×
(n1+ · · · + nn) with the Vi’s as diagonal blocks. E[·] and Tr {·}will,
respectively, indicate the expectation and trace operators.

2. Problem formulation

We consider the following linear, causal and time-invariant
(LTI) Output-Error (OE) system:

y(t) = H(q)u(t)+ e(t) (1)

where y(t) = [y1(t) · · · yp(t)]⊤ ∈ Rp is the p-dimensional output
signal, u(t) = [u1(t) · · · um(t)]⊤ ∈ Rm is the m-dimensional input
signal, e(t) is the additive noise and

H(q) =
∞
k=1

h(k)q−k (2)

is the system transfer function with q−1 being the backward shift
operator: q−1u(t) = u(t − 1). For simplicity, we will assume the
presence of a delay in H(q), i.e. h(0) = H(∞) = 0. In addition, we
assume e(t) ∼ N (0p, Σ), Σ = diag(σ ), σ = [σ1 · · · σp]

⊤.
The objective is to estimate, from a finite set of input–output

data DN = {u(t), y(t); t = 1, . . . ,N}, the impulse response
coefficients


h(k) ∈ Rp×m

; k = 1, . . . ,∞

.
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