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a b s t r a c t

This paper considers sliding mode control design for singular stochastic Markovian jump systems with
uncertainties. A suitable integral sliding function is proposed and the resulting sliding mode dynamics is
an uncertain singular stochastic Markovian jump system. A set of new sufficient conditions is developed
which not only guarantees the stochastic admissibility of the slidingmode dynamics, but also determines
all the parameter matrices in the integral sliding function. Then, a slidingmode control law is synthesized
such that reachability of the specified sliding surface can be ensured. Finally, three examples are given to
demonstrate the effectiveness of the results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Markovian jump systems (MJSs) have the advantage of better
representing physical systems with random changes in both
structure and parameters. Much recent attention has been paid
to the investigation of these systems (Fang & Loparo, 2002; Xiong
& Lam, 2006; Yue & Han, 2005). Singular systems have extensive
applications in fields related to electrical circuits and power
systems (Lewis, 1986; Yang, Zhang, & Zhou, 2006). When singular
systems experience abrupt changes in their structure, it is natural
to model them as singular Markovian jump systems (SMJSs)
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(Boukas, 2008; Huang & Mao, 2010). In practice, these systems are
often corrupted by noise, for example Brownianmotion. Therefore
it is of significance to study singular stochastic Markovian jump
systems (SSMJSs).

Sliding mode control (SMC) has been recognized as an effective
strategy for control of systems with uncertainties and nonlinearity
(Hung, Gao, & Hung, 1993; Ma & Boukas, 2009). The sliding mode
dynamics is a reduced-order system and completely insensitive
to matched uncertainties (Edwards & Spurgeon, 1998; Utkin,
Guldner, & Shi, 1999). Sliding mode methods can also be applied
to systems in the presence of mismatched uncertainties (Yan,
Spurgeon, & Edwards, 2005). To obtain similar levels of robustness
from a classical linear state feedback controller, high gain is
required (Young, Utkin, & Özgüner, 1999) which can be limiting
in terms of controller saturation and practical application. A novel
augmented sliding mode observer is presented for the augmented
system of MJSs and is utilized to eliminate the effects of sensor
faults and disturbances (Li, Gao, Shi, & Zhao, 2014). Sliding mode
methods are successfully applied to uncertain time-delay systems
(Alwi & Edwards, 2008; Fridman, Gouaisbaut, Dambrine, & Richard,
2003; Yan, Spurgeon, & Edwards, 2013), interconnected systems
(Yan, Spurgeon, & Edwards, 2010), stochastic systems (Niu, Ho, &
Wang, 2007; Shi, Xia, Liu, & Rees, 2006), SMJSs (Wu&Daniel, 2010;
Wu, Su, & Shi, 2012; Wu & Zheng, 2009). When a linear sliding
function is used, the dimension of the resulting sliding motion

http://dx.doi.org/10.1016/j.automatica.2017.01.002
0005-1098/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2017.01.002
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.01.002&domain=pdf
mailto:qlzhang@mail.neu.edu.cn
mailto:lili19770518@163.com
mailto:x.yan@kent.ac.uk
mailto:s.spurgeon@ucl.ac.uk
http://dx.doi.org/10.1016/j.automatica.2017.01.002


28 Q. Zhang et al. / Automatica 79 (2017) 27–34

will be reduced and the regular form typically used for sliding
mode control design (Edwards & Spurgeon, 1998) is necessary
in order to solve the corresponding existence problem. When
considering singular systems, this regular form is available only if
the column vector of the input matrix B is a linear representation
of that of the derivative matrix E. In comparison, the integral-
type sliding function introduces a compensator whose dimension
is equal to the dimension of the input vector and the resulting
slidingmotion is of full order. In this case the regular form typically
adopted for sliding mode controller design is not required and the
integral-type sliding function (Wu & Daniel, 2010;Wu et al., 2012;
Wu & Zheng, 2009) is suitable for any singular system. In Wu
et al. (2012) and Wu and Zheng (2009), parameter matrices Gi
(G) in the sliding function need to be designed in advance. If the
selection of these parametermatrices is not appropriate, additional
conservatism will be introduced into the stability analysis of
the resulting sliding mode dynamics. In order to decrease the
conservatism, these parametermatrices need be redesigned but no
constructive design approach is given. In Wu and Daniel (2010),
although a method of how to design all the parameter matrices
in the sliding function is given, a particular constraint must be
satisfied so that EBi for system matrices E and Bi must have full
column rank.

This paper considers the design of a SMC for a class of uncertain
SSMJSs. Key questions to be addressed are stated as follows:

Q1. How to design a suitable sliding function such that conditions
developed for the stochastic admissibility of the resulting
sliding mode dynamics can determine all the parameter
matrices in the sliding function complementing existing
design methods?

Q2. How to analyze and synthesize a SMC law so that the proposed
approach can effectively reject the effect of Markovian
switching on the desired dynamic performance of uncertain
SSMJSs?

2. System representation and preliminaries

Consider a nonlinear SSMJS described as follows:

Edx (t) = [(A (rt) + 1A (rt , t)) x (t)
+ B (rt) (u (t) + f (x (t) , rt))] dt
+D (rt) x (t) dϖ (t) (1)

where x (t) ∈ Rn is the state vector, u (t) ∈ Rm is the control
input and ϖ (t) is a one-dimensional Brownian motion satisfying
E {dϖ (t)} = 0 and E


dϖ 2 (t)


= dt , E {·} denotes the

mathematical expectation of the stochastic process or vector. The
matrix E ∈ Rn×n may be singular. It is assumed that rank (E) =

r ≤ n. Matrices A (rt) , B (rt) and D(rt) are known and real
with appropriate dimensions where B (rt) has full column rank,
1A (rt , t) is uncertain and satisfies

1A (rt , t) = M (rt) F (rt , t)N (rt) (2)

where matrices M (rt) and N (rt) are known, and the function
matrix F (rt , t) is unknown and Lebesgue-measurable with

F T (rt , t) F (rt , t) ≤ I

for all t ≥ 0; {rt , t ≥ 0} is a continuous-time Markov process
with right continuous trajectories taking values in a finite set S =

{1, 2, . . . ,N} with the transition rate matrix (TRM) Π ,

πij


given by

P {rt+h = j |rt = i } =


πijh + o (h) i ≠ j
1 + πiih + o (h) i = j (3)

where h > 0, limo(h)/h
h→0 = 0; πij ≥ 0 for j ≠ i is the transition

rate from mode i at time t to j at time t + h, which satisfies πii =

−
N

j=1,j≠i πij; the nonlinear term f (x (t) , rt) ∈ Rm represents the
system nonlinearity satisfying

∥f (x (t) , rt)∥ ≤ ϑrt ∥x (t)∥ ≤ ϑ ∥x (t)∥ , rt ∈ S (4)

where ϑrt > 0 is a constant and ϑ , maxi∈S (ϑi).
For each rt = i ∈ S, corresponding matrices or vectors relating

to rt in the system (1) are denoted with the index i, for example,
A (rt) = Ai, 1A (rt , t) = 1Ai (t), and f (x (t) , rt) = fi (x) etc.

The unforced nominal systemof the system (1) can be described
as

Edx (t) = Aix (t) dt + Dix (t) dϖ (t) . (5)

A basic assumption and a definition are first introduced.

Assumption 1. For i ∈ S, rank(E) = rank([E Di]).

Definition 1 (Xu & Lam, 2006).

(i) The continuous SSMJS (5) is said to be regular if det (sE − Ai)
is not identically zero for every i ∈ S.

(ii) The continuous SSMJS (5) is said to be impulse-free if
deg (det (sE − Ai)) = rank(E) for every i ∈ S.

(iii) The continuous SSMJS (5) is said to be stochastically stable if
for any x0 ∈ Rn and r0 ∈ S, there exists a scalar M̃ (x0, r0) > 0
such that

lim
t→∞

E

 t

0
xT (s, x0, r0) x (s, x0, r0) ds |x0, r0


≤ M̃ (x0, r0)

where x (t, x0, r0) denotes the solution under the initial
condition x0 and r0.

(iv) The continuous SSMJS (5) is said to be stochastically admissi-
ble if it is regular, impulse-free and stochastically stable.

Lemma 1 (Xu, Zhang, & Hu, 2007). For given matrices E, X > 0, Y , if
ETX + YΛT is nonsingular, then there exist matrices S > 0, L such
that ES + LΘT

=

ETX + YΛT

−1, where X, S ∈ Rn×n, Y , L ∈

Rn×(n−r), and Λ, Θ ∈ Rn×(n−r) are any matrices with full column
rank satisfying ETΛ = 0, EΘ = 0.

Lemma 2. Let M, F ,N and P be real matrices of appropriate
dimensions with P > 0, F TF ≤ I and a scalar ε > 0. Then

MFN + NTF TMT
≤ εMP−1MT

+
1
ε
NTF TPFN.

The proof is trivial, so it is omitted. �

Remark 1. From Lemma 2, when F = I , it follows that MN +

NTMT
≤ εMP−1MT

+
1
ε
NTPN , and when P = I , it follows that

MFN + NTF TMT
≤ εMMT

+
1
ε
NTN .

3. SMC synthesis

In this section, a sliding surface is designed and the correspond-
ing sliding motion is analyzed. Then sliding mode controllers are
synthesized such that the closed-loop system has the desired per-
formance.

For the system (1), consider the following integral sliding
function:

s (t) = BT
i P̄iEx (t) −

 t

0
BT
i P̄i (Ai + BiKi) x (θ) dθ (6)

where P̄i ∈ Rn×n and Ki ∈ Rm×n are real matrices to be designed
with BT

i P̄iBi being nonsingular. It should be noted that due to the
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