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a b s t r a c t

This paper proposes a novel decentralized adaptive excitation control scheme to globally stabilize large-
scale power systems and enhance the transient stability. Two smooth functions are introduced to
counteract the effect of unknown time-varying interactions, then a completely decentralized adaptive
controller is constructed on the basis of the adaptive backstepping approach. The proposed controller
utilizes only local measurements and has no requirement for the bounds of interconnections in the
power system. All signals of the overall closed-loop large-scale power system are proved to be globally
uniformly bounded. The proposed control scheme is tested on a two-area benchmark power system in
the face of a symmetrical three-phase short circuit fault. Simulation results have showed better transient
performances in comparison with existing controllers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Power systems are one of the most important and complex
large-scale nonlinear systems, operating in a constantly chang-
ing environment (Lu, Sun, & Mei, 2001; Pan, Yuan, Sandberg,
Goncalves, & Stan, 2015). As an effective tool for improving tran-
sient performances, excitation control of power systems has long
been an active research topic in the control community. Sys-
tem stability, robustness and decentralized structure are three
important issues that need to be considered for excitation con-
trol design. In the early stage of the research, based on approxi-
mately linearizedmodels, conventional excitation controllers such
as linear power system stabilizer (PSS) (Kamwa, Grondin, & Trudel,
2005; Larsen & Swann, 1981), were developed to primarily deal
with small disturbances about an operating point. However, this
type of control may not preserve stability if severe contingencies
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occur or the operating point of the power system is changed away
from the equilibrium point (Lu et al., 2001).

Practical demands of handling sudden operating point devia-
tions and large disturbances lead researchers to approach non-
linear excitation control by taking into consideration the entire
operation region of the generators in the power system. Nu-
merous decentralized nonlinear excitation controllers have been
developed based on nonlinear control techniques such as differ-
ential geometrical control (Lu & Sun, 1989), energy function anal-
ysis (Hao, Wang, Chen, & Shi, 2002; Shen, Mei, Lu, Hu, & Tamura,
2003; Shen, Sun, Ortega, & Mei, 2005; Xi, Cheng, Lu, & Mei, 2002),
sliding-mode control (Huerta, Loukianov, & Canedo, 2010; Majid-
abad, Shandiz, & Hajizadeh, 2015; Soto-Cota, Fridman, Loukianov,
& Canedo, 2006), and direct feedback linearization (Guo, Hill, &
Wang, 2000; Wang, Guo, & Hill, 1997). In spite of the progress,
it should be pointed out that, most of the aforementioned control
schemes need either the exact information of system parameters
or priori knowledge of the dynamic system to achieve the desired
control objectives. For instance, the nonlinear decentralized excita-
tion controller developed inGuo et al. (2000) is based on the known
bounds of parameters. Nevertheless, some of the system parame-
ters are unknown in practice especially when serious disturbances
occur.

To circumvent the obstacle caused by unknown parame-
ters, investigations have been extended to adaptive nonlinear
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Nomenclature

δi(t) The power angle of the ith generator, in rad
ωi(t) The relative speed of the ith generator, in rad/s
ω0 The synchronous machine speed, in rad/s
Pmi0 The mechanical input power, in p.u.
Pei(t) The active electrical power, in p.u.
Qei(t) The reactive electrical power, in p.u.
Di The per unit damping constant
Hi The inertia constant in seconds
E ′

qi(t) The transient EMF in the quadrature axis, in p.u.
Eqi(t) The EMF in the quadrature axis, in p.u.
Efi(t) The equivalent EMF in the excitation coil, in p.u.
T ′

d0i The direct axis transient short circuit time constant,
in seconds

Idi(t) The direct axis current, in p.u.
Iqi(t) The quadrature axis current, in p.u.
kci The gain of the excitation amplifier, in p.u.
ufi(t) The input of the Silicon Controlled Rectifier ampli-

fier of the generator, in p.u.
Vti(t) The terminal voltage of the ith generator
Bij The ith row and jth column element of nodal

susceptance matrix at the internal nodes after
eliminating all physical buses, in p.u.

xdi The direct axis reactance, in p.u.
xqi The quadrature axis reactance, in p.u.
x′

di The direct axis transient reactance, in p.u.
x′

qi The quadrature axis transient reactance, in p.u.

excitation control of multimachine power systems in Jain, Khor-
rami, and Fardanesh (1994), Karimi and Feliachi (2008), Nechadi,
Harmas, Hamzaoui, and Essounbouli (2012), and the references
therein. One interesting result in Karimi and Feliachi (2008)
showed that a totally decentralized adaptive backstepping exci-
tation controller can be constructed for stability enhancement.
However, this control scheme may be invalid if the interactive
terms cannot be expressed as a polynomial function of local elec-
tric power deviation. More recently, based on the adaptive back-
stepping method (Krstic, Kanellakopoulos, & Kokotovic, 1995), a
novel excitation control has been designed for improvement of
transient stability of power systems in Yan, Dong, Saha, and Ma-
jumder (2010). Nevertheless, the result developed in Yan et al.
(2010) is only partially decentralized since information exchange
among generators is required. It is common that the generators
are interconnected in wide geographical areas. Physical limita-
tion on the system structure makes information transfer among
subsystems unfeasible. Therefore, the problem of designing com-
pletely decentralized adaptive excitation controller for multima-
chine power systemswith unknown parameters has not been fully
explored, and to the best of our knowledge, remains unclear and
open.

In this paper, the objective is to revisit the decentralized
adaptive excitation control for multimachine power systems with
three goals in mind:

• handling uncertain interactions among subsystemswithout the
utilization of remote information;

• relaxing the assumption that the bounds of interactive terms
and plant parameters are known;

• preserving transient stability when a major fault occurs.

To this end, a novel decentralized adaptive excitation control
scheme based on backstepping method and a bound estimation
strategy is proposed, which achieves all three goals. Although
the design and analysis follow a step-by-step procedure in the

general framework of backstepping, the details involved vary a
lot in solving our problem. Compared with the previous works
(Guo et al., 2000; Karimi & Feliachi, 2008; Yan et al., 2010),
the highlighted features of this novel decentralized adaptive
control scheme are twofold. Firstly, the requirement of the known
bounds of interconnection parameters has been relaxed. Secondly,
the adaptive controllers are completely decentralized, i.e., global
stability of the overall closed-loop system is guaranteed without
using remote information.

The remainder of this paper is organized as follows. In Section 2
we give the dynamic model of a power system with excitation
control loop. Section 3 gives the decentralized adaptive controller
design, followed by the stability analysis in Section 4. To illustrate
the effectiveness of the proposed control scheme, simulation
results performed on a two-area benchmark power system are
presented in Section 5 and the conclusion is drawn in Section 6.

2. Power system dynamical model

For a large-scale power system consisting of n generators
interconnected through a transmission network, we apply the
classic dynamicmodel (Kundur, 1994; Lu et al., 2001). In themodel,
the generator ismodeled as the voltage behind direct axis transient
reactance; the angle of the voltage coincides with the mechanical
angle relative to the synchronously rotating reference frame. The
network has been reduced to internal bus representation. The
dynamical model of the ith machine with excitation control can
be written as follows:

Mechanical equations:

δ̇i(t) = ωi(t), (1)

ω̇i(t) = −
Di

2Hi
ωi(t) +

ω0

2Hi
(Pmi0 − Pei(t)). (2)

Generator electrical dynamics:

Ė ′

qi(t) =
1
T ′

d0i
(Efi(t) − Eqi(t)). (3)

Electrical equations:

Eqi(t) = E ′

qi(t) + (xdi − x′

di)Idi(t), (4)

Efi(t) = kciufi(t), (5)

Pei(t) =

n
j=1

E ′

qi(t)E
′

qj(t)Bij sin(δi − δj), (6)

Qei(t) = −

n
j=1

E ′

qi(t)E
′

qj(t)Bij cos(δi − δj), (7)

Idi(t) = −

n
j=1

E ′

qj(t)Bij cos(δi − δj), (8)

Iqi(t) =

n
j=1

E ′

qj(t)Bij sin(δi − δj), (9)

Eqi(t) = Vti +
Qeixdi
Vti

. (10)

The notation for the multimachine power system model is given
in the Nomenclature. Let δmi0, ωmi0 and Pmi0 be the desired values
for the power angle δi(t), relative speedωi(t) and the active power
Pei(t) of the ith generator at the operating point. Define δ̃i(t) =

δi(t) − δmi0, ω̃i(t) = ωi(t) − ωmi0 = ωi(t) for ωmi0 = 0 and
P̃ei(t) = Pei(t)−Pmi0. Based on the calculation inWang et al. (1997),
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