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a b s t r a c t

In this paper, we focus on distributed moving horizon estimation (DMHE) for a class of two-time-scale
nonlinear systems described in the framework of singularly perturbed systems. By taking advantage of
the time-scale separation property, a two-time-scale system is first decomposed into a reduced-order
fast system and a reduced-order slow system. The slow system is further decomposed into several
interconnected slow subsystems. In the proposed distributed state estimation scheme, a local estimator is
designed for each slow subsystem and for the reduced-order fast system. The slow subsystem estimators
communicate with each other to exchange information and they are only required to send information
to the fast system one-directionally. The fast system estimator does not send out any information. The
local estimators are designed as observer-enhanced moving horizon estimators. Sufficient conditions on
the convergence of the estimation error of the DMHE are derived. The application of the proposed DMHE
to a chemical process example demonstrates its applicability and effectiveness.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Complex and integrated systems are common occurrences
in manufacturing industries (e.g., chemicals, petrochemicals and
mineral processes). Model predictive control (MPC) systems are
widely used in the manufacturing industries to ensure the qual-
ity of products while maximizing economic profits and guarantee-
ing operation safety as well as environmental sustainability. Due
to the medium to large scales of many systems, the centralized
control framework is not practical in terms of computational bur-
den, organizational complexity, and fault tolerance (Christofides,
Scattolini, Muñoz de la Peña, & Liu, 2013). The above consider-
ations motivate significant research interests in distributed MPC
(Christofides et al., 2013). While there are extensive results on
distributed MPC, less attention has been given to distributed or
decentralized state estimation which is equally important and is
closely related to distributed control. It should be pointed out that
there are some algorithms on decentralized or distributed Kalman
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filtering (e.g., Stanković, Stanković, & Stipanović, 2009). However,
these algorithms typically do not account for system nonlinearity.

Recently, there are some results on distributed moving hori-
zon state estimation (DMHE). Moving horizon estimation (MHE)
is an online optimization-based technique and can handle non-
linearities, constraints and optimality considerations Alessandri,
Baglietto, Battistelli, and Zavala (2010) and Haber and Verhaegen
(2013). In Farina, Ferrari-Trecate, and Scattolini (2011), a DMHE al-
gorithmwas developed for nonlinear systems based on subsystem
models. An observer-enhanced DMHE algorithmwas developed in
Zhang and Liu (2013a), where an auxiliary nonlinear observer is
taken advantage of in the design of each local estimator. The aux-
iliary observer is used to calculate a reference state estimate based
on which a confidence region is constructed every sampling time.
Each local estimator optimizes its estimate within the confidence
region. The observer-enhanced design is less sensitive to external
noise comparedwith the auxiliary nonlinear observer. The conver-
gence rate of the DMHE may be tuned by tuning the auxiliary ob-
servers. It was shown to be less dependent on the arrival cost, the
estimationwindow size and have the potential to be used in output
feedback control with provable closed-loop stability Zhang and Liu
(2013a,b).

On the other hand, time-scale multiplicity is a common fea-
ture of many systems. For chemical processes, it usually arises
due to the strong coupling of physicochemical phenomena (Han
& Chung, 2001; Weekman & Nace, 1970). A direct application of
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standard control or estimation methods without taking into ac-
count time-scale multiplicity to systems with different time scales
may lead to ill-conditioning or even the loss of closed-loop sta-
bility (Christofides, 2000; Kokotovic, Khalil, & O’Reilly, 1986). The
singular perturbation theory is the standard tool for the analy-
sis of systems with time-scale multiplicity (Christofides, 2000;
Kokotovic et al., 1986). Within the singular perturbation frame-
work, the original system is typically decomposed into reduced-
order subsystemswith ‘‘fast’’ and ‘‘slow’’ dynamics. Themajority of
related results are on control systemdesign for two-time-scale sys-
tems (e.g., Chen,Heidarinejad, Liu,Muñozde la Peña&Christofides,
2011; Christofides, 2000; Kokotovic et al., 1986). Little attention
has been given to state estimation of systemswith time-scalemul-
tiplicity. In Nagy Kiss, Marx, Mourot, Schutz, and Ragot (2011),
state estimation of a wastewater treatment plant was addressed
via linearization in a centralized framework by neglecting the fast
dynamics.

In this work, the scope is on the handling of time-scale mul-
tiplicity in state estimation. Specifically, we consider state estima-
tion of a class of two-time-scale nonlinear systems. A system is first
decomposed into a reduced-order fast systemand several reduced-
order slow subsystems. A fast MHE is designed for the fast system
and a slow MHE is designed for each slow subsystem. The fast and
slow MHEs form a DMHE scheme. Each MHE is designed via the
observer-enhancedMHE technique (Liu, 2013). It is discovered that
the slowMHEs are entirely decoupled from the fastMHEwhich is a
significant difference from control of two-time-scale systems. The
decoupling ensures that only one-directional information trans-
mission from the slow MHEs to the fast MHE is needed and the
fast MHE does not send out any information. Sufficient conditions
are derived under which the proposed DMHE is guaranteed to give
ultimately bounded estimation error under bounded system dis-
turbances and measurement noise. The effectiveness of the pro-
posed method is demonstrated via the application to a chemical
process.

2. Preliminaries

2.1. Notation

The operator | · | denotes the Euclidean norm of a vector and
| · |

2
Q represents the square of the weighted Euclidean norm of

a vector, defined as |x|2Q = xTQx where Q is a positive definite
matrix. A function f (x) is said to be Lipschitz with respect to its
argument x if there exists a positive constant Lxf such that |f (x′) −

f (x′′)| ≤ Lxf |x
′
− x′′

| holds for all x′ and x′′ in a given region of x
and Lxf is the associated Lipschitz constant. A continuous function
α : [0, a) → [0, ∞) is said to belong to class K if it is strictly
increasing and satisfies α(0) = 0. A function β(r, s) is said to be a
classKL function if for each fixed s,β(r, s) belongs to classK with
respect to r , and for each fixed r , it is decreasing with respect to s,
and β(r, s) → 0 as s → ∞. A function f on an interval is said to
be concave if for any x and y in the interval and for any α ∈ [0, 1],
f ((1 − α)x + αy) ≥ (1 − α)f (x) + αf (y). The symbol diag(v)
denotes a diagonal matrix, in which the diagonal elements are the
elements of vector v. The symbol A+ denotes the pseudoinverse
of a matrix (or vector) A. I denotes a set of integers defined as
I = {1, . . . ,m}.

2.2. System description

In this study, we consider a class of two-time-scale nonlinear
systems that can be described in the framework of singularly

perturbed systems as follows:

ẋs(t) = f (xs(t), ws(t), ϵ) + f̃ (xs(t), xf (t), ϵ) (1a)
ϵẋf (t) = g(xf (t), wf (t), ϵ) + g̃(xs(t), xf (t), ϵ) (1b)
ys(t) = hs(xs(t)) + vs(t) (1c)
yf (t) = hf (xf (t)) + vf (t) (1d)

where xs ∈ Rnxs and xf ∈ Rnxf are state vectors, ws ∈ Rnws and
wf ∈ Rnwf denote system disturbances, ys ∈ Rnys and yf ∈ Rnyf

are system outputs, vs ∈ Rnvs and vf ∈ Rnvf denote measurement
noise, and ϵ is a small positive parameter reflecting the time-scale
separation in the dynamics of the nonlinear system. The functions
f and g depict, respectively, the dependence of the dynamics of
xs and xf on themselves and associated system disturbances. The
function f̃ characterizes the interaction between the dynamics of xs
and the state vector xf . Similarly, g̃ depicts the interaction between
the dynamics of xf and xs. It is assumed that functions f , g , f̃ and
g̃ are all locally Lipschitz with respect to their arguments. Note
that locally Lipschitz is a mild assumption on the continuity of
the functions and it imposes limits on how fast the functions can
change. The small parameter ϵ appears as a multiplier of the time
derivative of state xf , and the state xf evolves much faster than the
state xs (Khalil, 2002).Wewill refer to xs as the slow states and xf as
the fast states in the remainder.We assume that themeasurements
ys and yf are continuously available.

2.3. Two-time-scale decomposition

It is possible to decompose two-time-scale systems described
in (1) into two separate reduced-order systems evolving in a fast
and a slow time scales. This property will be taken advantage of in
the design of the proposed distributed state estimation scheme.

First, we set ϵ = 0 in (1) and obtain that:

dxs(t)
dt

= f (xs(t), ws(t), 0) + f̃ (xs(t), xf (t), 0) (2a)

0 = g(xf (t), wf (t), 0) + g̃(xs(t), xf (t), 0). (2b)

We assume that there exists a unique isolated solution to the
algebraic equation (2b):

xf (t) = ĝ(xs(t), wf (t)) (3)

for each pair of (xs, wf ), and the partial derivatives ∂ ĝ/∂x and
∂ ĝ/∂w are sufficiently smooth. This assumption is a standard one
in two-time-scale decomposition and is used to ensure that xf
can be uniquely expressed in terms of xs and wf (Kokotovic et al.,
1986). Note that a control system is normally operated within an
operating range and the assumption does not impose practical
restrictions. Substituting (3) into (2a), the reduced-order slow
system is obtained as follows:

˙̄xs(t) = f (x̄s(t), ws(t), 0) + f̃ (x̄s(t), ĝ(x̄s(t), wf (t)), 0). (4)

Note that in (4), x̄s is used to denote the state of the reduced-order
slow system to indicate that the dynamics of the reduced-order
slow system is (slightly) different from the dynamics of xs in the
original system (1).

To derive the reduced-order fast system, we define a fast time
scale τ =

t
ϵ
and introduce the deviation variable ef := xf −

ĝ(xs, wf ). The fast system (1b) can be rewritten in the following

form: def
dτ = g


ef + ĝ(xs, wf ), wf , ϵ


+ g̃


xs, ef + ĝ(xs, wf ), ϵ


−

ϵ
∂ ĝ(xs,wf )

∂wf
ẇf −ϵ

∂ ĝ
∂xs


f (xs, ws, ϵ) + f̃ (xs, ef + ĝ(xs, wf ), ϵ)


. Setting

ϵ to be zero and definingG

ef , xs, wf


:= g


ef +ĝ(xs, wf ), wf , 0


+
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